\(\left|x-2017\right|^{20}+\left|x-2018\right|^4=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

số cuối là 1 ko phải 11 nhá mn

Đề hình như hơi sai sai \(\left|x+2017\right|^{20}\)hay \(\left(x+2017\right)^{20}\)hay \(\left|x+2017\right|\)

Theo mk đề là: \(\left|x+2017\right|+\left|x+2018\right|=1\)

\(\left|x+2017\right|+\left|-x-2018\right|=1\)

+)Ta có: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)nên

\(\left|x+2017\right|+\left|-x-2018\right|\ge\left|x+2017-x-2018\right|\)

\(\Rightarrow\left|x+2017\right|+\left|-x-2018\right|\ge\left|-1\right|\)

\(\Rightarrow\left|x+2017\right|+\left|-x-2018\right|\ge1\)

+)Dấu "=" xảy ra khi

\(\left(x+2017\right).\left(-x-2018\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x+2017\ge0\\-x-2018\ge0\end{cases}hoac\hept{\begin{cases}x+2017< 0\\-x-2018< 0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-2017\\-x\ge2018\end{cases}hoac\hept{\begin{cases}x< -2017\\-x< 2018\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge-2017\\x\le-2018\end{cases}hoac\hept{\begin{cases}x< -2017\\x>-2018\end{cases}}}\)

Vậy \(-2018< x< -2017\)(tm)

Chúc bạn học tốt

10 tháng 3 2017

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

mình chưa học

1 tháng 11 2020

\(\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}=0\)

Ta có : \(\hept{\begin{cases}\left(\frac{3x-5}{9}\right)^{2018}\ge0\forall x\\\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall x,y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{3x-5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\3y+0,4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{2}{15}\end{cases}}\)