K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Đặt: \(\left|x-2017\right|=t\ge0\) ta có: \(l=\frac{t+2017}{t+2018}=\frac{t+2018-1}{t+2018}=1-\frac{1}{t+2018}\ge1-\frac{1}{2018}=\frac{2017}{2018}\)

Dấu "=" xảy ra khi: \(t=0\Leftrightarrow x=2017\)

14 tháng 3 2018

Đặt: |x−2017|=t≥0 ta có: l=t+2017t+2018 =t+2018−1t+2018 =1−1t+2018 ≥1−12018 =20172018 

Dấu "=" xảy ra khi: t=0⇔x=2017

 ...

..

6 tháng 3 2020

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

6 tháng 3 2020

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

7 tháng 11 2019

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

7 tháng 11 2019

Ta có:

|x − 2015| + |x − 2016| + |x − 2017|

= |x − 2016| + |x − 2015| + |x - 2017|

= |x − 2016|+(| x− 2015| + |x − 2017|)

∗)∗) Áp dụng BĐT |a| + |b| ≥ |a + b|, ta có:

|x − 2015|+|x − 2017| = |x − 2015|+|2017 − x|

≥ |x − 2015 + 2017 − x| = |2| = 2

∗) Dễ thấy: |x − 2016| ≥ 0 ∀ x

⇔|x − 2015| + |x − 2016| + |x − 2017|

Đẳng thức xảy ra ⇔x−2015≥0

x−2016=0

x−2017≤0 ⇔x≥2015 (Loại)

x=2016 (TM)

x≤2017 (Loại)

Vậy x=2016

28 tháng 3 2018

ko ai biết làm à

27 tháng 2 2020

Sao chép

10 tháng 8 2016

ta thấy trị tuyệt đối của x-2016 lớn hơn hoặc bằng 0 với mọi x. Vậy phân thức nhỏ nhất bằng 2017/2018 

30 tháng 3 2018

Với mọi x ta có :

\(\left|x+2018\right|=\left|-x-2018\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|x+2018\right|=\left|x+2016\right|+\left|-x-2018\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|\left(x+2016\right)+\left(-x-2018\right)\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge\left|-2\right|\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|\ge2\)

\(\left|x+2017\right|\ge0\)

\(\Leftrightarrow\left|x+2016\right|+\left|-x-2018\right|+\left|x+2017\right|\ge2\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left(x+2016\right)\left(-x-2018\right)\ge0\left(1\right)\\\left|x+2017\right|=0\left(2\right)\end{matrix}\right.\)

Từ \(\left(1\right)\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2016\ge0\\-x-2018\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2016\le0\\-x-2018\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-2016\\-2018\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-2016\\-2018\le x\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-2016\ge x\ge-2018\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow-2016\ge x\ge-2018\left(I\right)\)

Từ \(\left(2\right)\Leftrightarrow x+2017=0\)

\(\Leftrightarrow x=-2017\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow GTNN\) của \(\left|x+2016\right|+\left|x+2017\right|+\left|x+2017\right|=2\Leftrightarrow x=-2017\)

26 tháng 10 2016

a) \(A=\left|x-2016\right|+2017\)

Vì: \(\left|x-2016\right|\ge0\)

=> \(\left|x-2016\right|+2017\ge2017\)

Vậy GTNN của A lòa 2017 khi\(x-2016=0\Leftrightarrow x=2016\)

b) \(\left|x-2016\right|+\left|y-2017\right|+2018\)

Vì: \(\begin{cases}\left|x-2016\right|\ge0\\\left|x-2017\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x-2016\right|+\left|x-2017\right|\ge0\)

=> \(\left|x-2016\right|+\left|y-2017\right|+2018\ge2018\)

Vậy GTNN của B là 2018 khi \(\begin{cases}x-2016=0\\y-2017=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2016\\y=2017\end{cases}\)

28 tháng 10 2016

a)Ta có: |x-2016|\(\ge\) 0

=>|x-2016|+2017 \(\ge\) 2017

hay A \(\ge\) 2017

GTNN của A = 2017 khi |x-2016|=0

=>x-2016=0

=>x=0+2016

=>x=2016

Vậy GTNN của A=2017 khi x=2016

b)Tương tự câu a)