Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
+ x=0 => c chia hết cho 3
=> ax2 + bx chia hết cho 3 => x(ax +b) chia hết cho 3 lấy x không chia hết cho 3 => ax +b chia hết cho 3 lấy x chia hết cho 3 => b chia hết cho 3
Vậy b ; c chia hết cho 3 => ax2 chia hết cho 3 lấy x không chia hết cho 3 => a chia hết cho 3
=> dpcm
vì P(x) chia hết cho 3 với mọi x nên ta xét các trường hợp sau:
- ta có: P(0) chia hết cho 3. mà P(0) = c nên ta suy ra c chia hết cho 3
- ta có: P(1) chia hết cho 3. Mà P(1)=a+b+c nên ta suy ra a+b+c chia hết cho 3
lại có c chia hết cho 3 (đã chứng minh)
nên suy ra a+b chia hết cho 3
- ta có ; P(2) chia hết cho 3. mà P(2)= 4a+2b+c=2a+2(a+b)+c
mà c chia hết cho 3, a+b chia hết cho 3 ( đã chứng minh)
nên suy ra 2a chia hết cho 3
mà (2,3)=1 (2 số nguyên tố cùng nhau)
suy ra a chia hết cho 3
mà a+b chia hết cho 3
nên suy ra b chia hết cho 3
vậy a,b,c chia hết cho 3
https://olm.vn/hoi-dap/detail/240754432073.html
Dạng giống nha
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot4-2b+c=0\\a\cdot4+2b+c=0\\a-c=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-2b+c=0\\4a+2b+c=0\\a+0b-c=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{5}\\b=0\\c=-\dfrac{12}{5}\end{matrix}\right.\)
1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0
Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)
\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)
2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)
g(x) có bậc 1 => a-1=0 => a=1. Khi đó
\(g\left(x\right)=2x+b\)lại có g(2)=1
\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)
3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)
h(x) có bậc 2 => 5-a=0 => a=5
Khi đó h(x)=-7x2+8x-b
h(-1)=3 => -7(-1)2+8.(-1)+b=3
<=> -7-8+b=3 => b=18
4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1
r(x) bậc 2 => a+4=0 => a=-4
r(2)=5 => (-4).22+b.2-1=5
<=> -16+2b-1=5
<=> 2b=22 => b=11
\(f\left(x\right)=2x^3+ã^2+bx+3\)
\(g\left(x\right)=x^2-3x+2=\left(x-1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Do \(f\left(x\right)\) chia hết \(g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+5=0\\4a+2b+19=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{2}\\b=-\frac{9}{2}\end{matrix}\right.\)
Cho mình hỏi tại sao g(x) lại bằng 0?