Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9:
Ta có: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{-t}{-9}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{-z}{17}=\dfrac{t}{9}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\\\dfrac{-y}{3}=-2\\\dfrac{-z}{17}=-2\\\dfrac{t}{9}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\-y=-6\\-z=-34\\t=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=6\\z=34\\t=-18\end{matrix}\right.\)
Vậy: (x,y,z,t)=(-10;6;34;-18)
Bài 11:
Ta có: \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}\)
\(\Leftrightarrow\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}=\dfrac{-7}{6}\)
Ta có: \(\dfrac{x}{18}=\dfrac{-7}{6}\)
\(\Leftrightarrow x=\dfrac{18\cdot\left(-7\right)}{6}=-21\)
Ta có: \(\dfrac{-98}{y}=\dfrac{-7}{6}\)
\(\Leftrightarrow y=\dfrac{-98\cdot6}{-7}=84\)
Ta có: \(\dfrac{-14}{z}=\dfrac{-7}{6}\)
\(\Leftrightarrow z=\dfrac{-14\cdot6}{-7}=12\)
Ta có: \(\dfrac{u}{-78}=\dfrac{-7}{6}\)
\(\Leftrightarrow u=\dfrac{-78\cdot\left(-7\right)}{6}=\dfrac{78\cdot7}{6}=91\)
Ta có: \(\dfrac{t}{102}=\dfrac{-7}{6}\)
\(\Leftrightarrow t=\dfrac{-7\cdot102}{6}=-7\cdot17=-119\)
Vậy: (x,y,z,t,u)=(-21;84;12;-119;91)
b2
P=4a^2 + 4a =4(a^2 + a)=4.[a.a + a]=4[a.(a+1)]
Mà a và a+1 là 2 số nguyên liên tiếp nên tích 2 số này chia hết cho 2
Đặt a(a+1)=2.k ( k thuộc Z)
Suy ra: P=4.2k=8k chia hết cho 8
k ch mình nha
\(x\left(x+y+z\right)=10\) (1)
\(y\left(y+z+x\right)=25\) (2)
\(z\left(z+x+y\right)=-10\) (3)
Lấy (1) + (2) + (3) theo vế ta có:
\(x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=10+25-10\)
\(\Leftrightarrow\)\(\left(x+y+z\right)^2=25\)
\(\Leftrightarrow\)\(x+y+z=\pm\sqrt{25}=\pm5\)
Nếu \(x+y+z=5\) thì: \(\hept{\begin{cases}x=2\\y=5\\z=-2\end{cases}}\)
Nếu \(x+y+z=-5\)thì \(\hept{\begin{cases}x=-2\\y=-5\\z=2\end{cases}}\)
Vậy...
các bạn giải bài này kỹ cho mình nhé