\(y=\dfrac{x^3+1}{x^4+1}\)

Giải hẳn cho mình ra với...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 3 2021

Lời giải:Để $y$ nguyên thì $x^3+1\vdots x^4+1$

$\Leftrightarrow x^4+x\vdots x^4+1$

$\Leftrightarrow x^4+1+x-1\vdots x^4+1$

$\Leftrightarrow x-1\vdots x^4+1$

Nếu $x-1=0$ thì điều trên đúng. Kéo theo $y=1$

Nếu $x-1\neq 0$ thì $|x-1|\geq x^4+1(*)$

Cho $x>1$ thì $(*)\Leftrightarrow x-1\geq x^4+1$

$\Leftrightarrow x(1-x^3)-2\geq 0$ (vô lý với mọi $x>1$)

Cho $x< 1$ thì $(*)\Leftrightarrow 1-x\geq x^4+1$

$\Leftrightarrow x^4+x\leq 0$

$\Leftrightarrow x(x^3+1)\leq 0$

$\Leftrightarrow -1\leq x\leq 0$. Do $x$ nguyên nên $x=-1$ hoặc $x=0$

Với $x=-1$ thì $y=0$

Với $x=0$ thì $y=1$

Vậy..........

13 tháng 5 2017

\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)

(AM-GM)

do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)

Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)

13 tháng 5 2017

u cha ông cx giỏi AM-GM z !!

19 tháng 5 2017

chỉ biết cách làm mấy dạng căn trong căn như vầy là phá từ căn nhỏ nhất lên bằng cách phân tích biểu thức trong căn đó thành dạng bình phương 1 số.

\(\sqrt{53-20\sqrt{4+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{53-20\sqrt{4+\sqrt{\left(8+2\cdot2\sqrt{2}+1\right)}}}\)

\(=\sqrt{53-20\sqrt{4+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{53-20\sqrt{4+\left|2\sqrt{2}+1\right|}}\)

\(=\sqrt{53-20\sqrt{5+2\sqrt{2}}}\)

= { \(5+2\sqrt{2}\) bằng bao nhiêu bình phương không biết => không làm được, hóng người trả lời câu này cả buổi để tham khảo, nhưng chả thấy ai hết, khả năng của t chỉ được thế thôi , xin lỗi nhé}

20 tháng 5 2017

Bài này chắc g.viên dạy của tớ cho sai đề bạn ạ:))...Dù sao cũng cảm ơn bạn nhiều ạ:)))ok

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4

5 tháng 3 2017

=\(\dfrac{3}{2}\) đó bạn

5 tháng 3 2017

vâng ạ,em cảm ơn vui

23 tháng 2 2017

thanghoabằng chứng k fake đâu bạn

24 tháng 2 2017

mình k cần pải cm ai tin thì tùy

11 tháng 6 2017

bạn ơi sai đề

\(\sqrt{x-10}\ge0\) ( với x >= 10 ).

11 tháng 6 2017

bạn ơi sai đề rồi ; căn bật sao âm được

19 tháng 3 2017

m=-5/4 đó bạn

19 tháng 3 2017

bạn giải như thế nào vậy