Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
a) \(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\Rightarrow\frac{3}{x}=\frac{5}{6}-\frac{y}{3}=\frac{5}{6}-\frac{2y}{6}=\frac{5-2y}{6}\)
Do đó: x(5-2y)=18=2.32
=> Do x và y là các số nguyên nên 5-2y là ước của 18, mặt khác 5-2y là số lẻ.
Ước lẻ của 18 là : {1,-1,3,-3,9,-9}.
Ta có bảng:
5-2y | 1 | -1 | 3 | -3 | 9 | -9 |
2y | 4 | 6 | 2 | 8 | -4 | -14 |
y | 2 | 3 | 1 | 4 | -2 | 7 |
x | 18 | -18 | 6 | -6 | 2 | -2 |
b) Ta có: \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
\(\Rightarrow5xy-60=y\)
\(y\left(5x-1\right)=60\)
Vì x,y là sô nguyên nên y là ước của 60
Mà Ư(60)={-60,-30,-20,-15,-12,-10,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,10,12,15,20,30,60}
Ta có bảng sau:
y | -60 | -30 | -20 | -15 | -12 | -10 | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 |
5x-1 | -1 | -2 | -3 | -4 | -5 | -6 | -10 | -12 | -15 | -20 | -30 | -60 | 60 | 30 | 20 | 15 | 12 | 10 | 6 | 5 | 4 | 3 | 2 | 1 |
x | 0 | L | L | L | L | -1 | L | L | L | L | L | L | L | L | L | L | L | L | L | L | 1 | L | L | L |
Dựa vào bảng trên ta tìm được các cặp nghiệm (x,y) là: (0,-60); (-1,-10); (1,15)
c) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\Rightarrow\frac{4}{y}=\frac{x}{3}-\frac{1}{5}=\frac{5x-3}{15}\Rightarrow y\left(5x-3\right)=60\)
=> 5x-3 thuộc Ư(60)={-60,-30,-20,-15,-12,-10,-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,10,12,15,20,30,60}
Ta có bảng sau:
5x-3 | -60 | -30 | -20 | -15 | -12 | -10 | -6 | -5 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 |
x | L | L | L | L | L | L | L | L | L | 0 | L | L | L | 1 | L | L | L | L | L | 3 | L | L | L | L |
y | L | L | L | L | L | L | L | L | L | -20 | L | L | L | 30 | L | L | L | L | L | 5 | L | L | L | L |
Vậy...
a) \(\frac{9+xy}{3x}=\frac{5}{6}\) <=> 6(9+xy)=15x <=> 54+6xy=15x <=> 15x-6xy=54
<=> 3(5x-2xy) =54 <=> 5x-2xy=18 <=> x(5-2y) =18=\(\pm2.9=\pm1.18=\pm3.6\)
Vì 5-2y luôn là số lẻ nên 5-2y\(\in\left\{\pm1,\pm3,\pm9\right\}\)=> x\(\in\left\{\pm18,\pm6,\pm2\right\}\)
=> (x,y)=(18,2);(-18,3);(6,1);(-6,4);(2,-2);(-2,7)
b)\(\frac{xy-12}{6y}=\frac{1}{30}\)<=> 30(xy-12)=6y <=> 30xy-360=6y <=> 6y(5x-1)=360
<=> y(5x-1)=60
Làm tương tự câu a
c) \(\frac{xy-12}{3y}=\frac{1}{5}\)<=> 5xy-60=3y
<=> y(5x-3)=60
Làm tương tự
a) \(\frac{4}{7}=\frac{12}{21}=\frac{28}{49}=\frac{52}{91}\)
b) \(\frac{4}{5}=\frac{12}{15}=\frac{16}{20}=\frac{8\cdot\left(16-15\right)}{10}\)
=> x,y,y phù hợp vs từng vị trí
hok tốt
\(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\)
\(\Rightarrow\frac{-4}{8}=\frac{x}{-10}\Leftrightarrow x=\frac{-10.\left(-4\right)}{8}=5\)
\(\Rightarrow\frac{-4}{8}=\frac{-7}{y}\Leftrightarrow y=\frac{-7.8}{-4}=14\)
\(\Rightarrow\frac{-4}{8}=\frac{z}{-24}\Leftrightarrow z=\frac{-24.\left(-4\right)}{8}=12\)
Vậy
\(\frac{x}{2}=\frac{8}{x}\)
\(\Rightarrow x.x=2.8\)
\(x^2=16\)
\(x^2=\left(\pm4\right)^2\)
\(\Rightarrow x=\pm4\)
học tốt
c)\(-\frac{4}{8}=\frac{x}{-10}=-\frac{7}{y}=\frac{z}{-24}\)
\(\Leftrightarrow\hept{\begin{cases}-\frac{4}{8}=\frac{x}{-10}\\-\frac{4}{8}=-\frac{7}{y}\\-\frac{4}{8}=\frac{z}{-24}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\left(-4\right).\left(-10\right):8=5\\y=8.\left(-7\right):\left(-4\right)=14\\z=-4.\left(-24\right):8=12\end{cases}}}\)
vậy x=5;y=14;z=12
d) \(\frac{x}{2}=\frac{8}{x}\)
\(\Leftrightarrow x^2=2.8\)
\(\Leftrightarrow x^2=16\)
\(\Rightarrow x=\pm4\)
\(\frac{-4}{8}=\frac{x}{-10}=\frac{-7}{y}=\frac{z}{-24}\Rightarrow\frac{-1}{2}=\frac{5}{-10}=-\frac{7}{14}=\frac{12}{-24}\Rightarrow x=5;y=14;z=12\)
Ta có: \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Rightarrow5.8=\left(1-2y\right)x\)
\(\Rightarrow40=x\left(1-2y\right)\)
Ta thấy 1 - 2y là ước lẻ của 40 nên x là ước chẵn của 40
Lập bảng:
hello asuna
\(\frac{5}{x}\)+\(\frac{y}{4}\)=\(\frac{1}{8}\)
\(\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)
=>\(\frac{1}{8}-\frac{y.2}{4.2}=\frac{5}{x}\)
\(\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)
=> x=8
\(\frac{2y}{8}=\frac{1}{8}-\frac{5}{8}\)
\(\frac{2y}{8}=\frac{-4}{8}\)
\(=>y=-4:2\)
\(y=-2\)
\(vay\)\(x=8;y=-2\)
\(kminhnha\)