Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$xy^2+2x-y^2=8$
$(xy^2-y^2)+(2x-2)=6$
$y^2(x-1)+2(x-1)=6$
$(y^2+2)(x-1)=6$
Vì $y^2+2\geq 0+2=2$ và $y^2+2, x-1$ là các số nguyên nên ta có bảng sau:
Các bạn ơi giúp mk với mk đag cần vội,ai trả lời nhanh nhất đúg nhất mk sẽ k cho
=>y(x-7)=3(7-x)
=>y(x-7)-3(7-x)=0
=>(x-7)(y+3)=0
=>x=7 và y=-3
Giải : Ta có: 25 là số lẻ
=> 2x2 + 7y2 là số lẻ
mà 2x2 luôn chẵn => 7y2 là số lẻ => y2 là số lẻ
=> y2 = 1 (vì 7y2 \(\le\)25 => y2 \(\le\)25/7 \(\approx\)3}
=> y = \(\pm\)1
Với y2 = 1 => 7y2 = 7
=> 2x2 + 7 = 25
=> 2x2 = 25 - 7
=> 2x2 = 18
=> x2 = 9
=> x = \(\pm\)3
Vậy x = 3 hoặc x = -3 và y = 1 hoặc y = -1 (tm)
a: \(\Leftrightarrow x\in\left\{1;-1;2;-2;3;-3;4;-4;0\right\}\)
Tổng là 0
b: \(\Leftrightarrow x\in\left\{-6;-5;-4;...;4;5;6\right\}\)
Tổng là 0