Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)
mà \(\left(x-2\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|2x-6\right|\ge0\\\left|y+7\right|\ge0\end{cases}}\)
mà \(\left|2x-6\right|+\left|y+7\right|=0\)
\(\Rightarrow\hept{\begin{cases}2x-6=0\\y+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-7\end{cases}}}\)
\(\frac{x}{6}-\frac{2}{y}=\frac{1}{12}\)
<=> \(\frac{2}{y}=\frac{2x}{12}-\frac{1}{12}\)
<=> \(\frac{2}{y}=\frac{2x-1}{12}\)
<=> \(y\left(2x-1\right)=24\)
=> y; 2x - 1 \(\in\)Ư(24) = {1; -1; 2; -2; 3; -3; 4; -4; 6; -6; 8; -8; 12; -12; 24; -24}
Do x; y \(\in\)Z, mà 2x - 1 là số lẽ => 2x - 1 \(\in\){1; -1; 3; -3}
Lập bảng:
2x - 1 | 1 | -1 | 3 | -3 |
y | 24 | -24 | 8 | -8 |
x | 1 | 0 | 2 | -1 |
Vậy ...
\(\frac{x}{6}=\frac{2}{y}=\frac{1}{30}\)
\(\frac{5x}{30}-\frac{1}{30}=\frac{2}{y}\)
\(\frac{5x-1}{30}=\frac{2}{y}\)
\(y\left(5x-1\right)=60=2^2.3.5\)
Tự lm tiếp
Ta có:\(x^2+117\ge117\Rightarrow y^2\ge117\Rightarrow y\ge10\) mà y là số nguyên tố nên y lẻ
\(\Rightarrow y^2\) lẻ \(\Rightarrow x^2+117\) lẻ \(\Rightarrow x^2\) chẵn\(\Rightarrow x\)chẵn mà x là số nguyên tố nên x=2
\(\Rightarrow y^2=2^2+117=121\Rightarrow y=11\)
Vậy x=2,y=11 thỏa mãn
Ta có 6 = 3.2 - (-3).(-2);
Trường hợp 1. x - 2 = 2; y +1 = 3. Tìm được x = 4; y = 2.
Tương tự với các trường hợp khác, vậy tìm được các cặp
(x; y) = {(-4;-2), (-1;-3), (0;-4), (1;-7), (4;2), (5;1), (8;0)}
x2+117=y2
=>y2-x2=117
=>(y-x)(y+x)=117
Vì tích là số lẻ nên cả 2 thừa số đều lẻ
=> Phải có 1 số chẵn 1 số lẻ
Số nguyên tố chẵn duy nhất là 2 nên x=2, nếu y=2 thì y-x<0
Thay x=2 ta có 22+117=y2
121=y2
=>y=11
Vậy x=2, y=11
ta có ; - nếu y2 là số chẵn ,mà y là số nguyên tố =>y =2.
=> x2 + 117 = 22= 4 (vô lý). => y2 phải là số lẻ, mà 117 là số lẻ
=> x\(^2\)là số chẵn => x là số nguyên tố chẵn => x=2
Thay vào ta có:
2\(^2\)+117= y\(^2\)=> 121=y\(^2\)=> 11\(^2\)=y\(^2\) => y=11
Vậy x=2, y=11