Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
a) Ta có = 1 = 1.1 = (-1) . (-1)
Lập bảng xét 2 trường hợp ta có :
\(x+3\) | \(1\) | \(-1\) |
\(y+2\) | \(1\) | \(-1\) |
\(x\) | \(-2\) | \(-4\) |
\(y\) | \(-1\) | \(-3\) |
Vậy các cặp (x;y) thỏa mãn là : (- 2 ; - 1) ; (- 4 ; - 3)
b)
\(a;\left(x+3\right)\left(y+2\right)=1\)
=> Có 2 TH:
*TH1: x+3 = 1 và y+2 =1
=> x = -2 y = -1
* TH2: x +3 = -1 và y + 2 = -1
=> x = -4 y = -3
a)(x-1)(y+2)=7
=>x-1=1;y+2=7 hoặc x-1=7 ; y+2=1 hoặc x-1=-1;y+2=-7
=>x=2;y=5 hoặc x=8;y=-1hoặc x=0 hoặc y=-9
b)x(y-3)=-12
=>x=-3;y-3=4 hoặc x=3 ; y-3=-4 hoặc x=1 ;y-3=-12 hoặc x=-1 ;y-3=12
=>x=-3;y=7 hoặc x=3 ;y=-1 hoặc x=1 ;y=-9 hoặc x=-1;y=15
Bài 2
\(a,\)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)
Vì \(x^2+7>0\)\(\Rightarrow x^2-49< 0\)
\(\Rightarrow\left(x-7\right)\left(x+7\right)< 0\)
\(...\)
Bài 2:
a) \(\left(x^2+7\right).\left(x^2-49\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+7< 0\\x^2-49>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+7>0\\x^2-49< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2< -7\\x^2>49\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x^2>-7\\x^2< 49\end{cases}}\)
\(\Leftrightarrow-7< x^2< 49\)
Mà \(x^2\ge0\)và \(x^2\)là 1 SCP
\(\Rightarrow x^2\in\left\{1;4;9;16;25;36\right\}\)
\(\Rightarrow x\in\left\{1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{1;2;3;4;5;6\right\}\)
ta có \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\)
mà \(\left(x-2\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
b)
ta có \(\hept{\begin{cases}\left|2x-6\right|\ge0\\\left|y+7\right|\ge0\end{cases}}\)
mà \(\left|2x-6\right|+\left|y+7\right|=0\)
\(\Rightarrow\hept{\begin{cases}2x-6=0\\y+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-7\end{cases}}}\)
tốt lắm