K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

\(A=x^4+2x^3+7x^2+6x+9\)  

\(=\left(x^2\right)^2+2.x^2.x+x^2+6\left(x^2+x\right)+9\)

\(=\left(x^2+x\right)^2+2.\left(x^2+x\right).3+3^2\)

\(=\left(x^2+x+3\right)^2\)

2, \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Rightarrow152=\left(x+y\right).19\)    

\(\Rightarrow x+y=8\)

Mà \(x-y=2\Rightarrow\hept{\begin{cases}x=\left(8+2\right):2=5\\y=x-2=3\end{cases}}\)

Vậy x = 5 và y = 3

18 tháng 10 2018

cảm ơn nhé

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

6 tháng 4 2017

<=> \(x^3-x+y^{3_{ }}-y+z^3-z=2017\)

<=>\(\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)=2017\)(1)

vì \(x-1;x;x+1\)là 3 sô nguyên liên tiếp nên tích của chúng chia hết cho 3=>vế trái (1) chia hết cho 3

Mà 2017 không chia hết cho 3

=>Phương trình đã cho vô nghiệm

27 tháng 6 2015

y3=x3+x2+x+1

<=>y3=x2(x+1)+(x+1)

<=>y3=(x2+1)(x+1)

Do x,y đều là số nguyên

=>(x2+1)(x+1)=1.y3=y2.y

*)Nếu x2+1=1 x+1=y3

=>x=0 y=1(TM)

*)Nếu x2+1=y3 x+1=1<=>x=0 y=1(TM)

*)Nếu x2+1=y x+1=y2<=>(x2+1)2=x+1

<=>x4+2x2+1-x-1=0

<=>x4+2x2-x=0

<=>x3+2x-1=0

<=>x(x2+2)=1=1.1=(-1)(-1)

Thay x vào ta không tìm được x thỏa mãn nên trường hợp này loại

*)x2+1=y x+1=y2

=>(x+1)2=x2+1

<=>x2+2x+1-x2-1=0

<=>2x=0

<=>x=0=>y=1

Vậy x=0 y=1

5 tháng 8 2016

Từ giả thiết , ta có (x - 2)2 và (y - 3) là các ước nguyên của -4 ,tức thuộc tập {-4;-2;-1;1;2;4} 

mà (x - 2)2 là số chính phương,không âm

=> (x - 2)2 = 1 thì y - 3 = -4

     (x - 2)2 = 4 thì y - 3 = -1

=> x - 2 = -1 ; 1 hay    x = 1 ; 3 thì y = -1

     x - 2 = -2 ; 2 hay    x = 0 ; 4 thì y = 2 

Vậy (x ; y) = (1 ; -1) ; (3 ; -1) ; (0 ; 2) ; (4 ; 2)

5 tháng 8 2016

Vì x,y nguyên=>(x-2)2, (y-3) nguyên =>(x-2)2,(y-3) thuộc ước của -4

=>(x-2)2,(9y-3) thuộc {-4;4;-2;2} 

Vì (x-2) lớn hơn hoặc bằng 0 => (x-2)2=2;4

.................BẠN TỰ GIẢI NỐT NHA!

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0