Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x-1}{3}=\frac{y-1}{4}=\frac{z+2}{5}=\frac{z-1+y-1+z+2}{3+4+5}=\frac{-36}{12}=-3\)
=> \(\hept{\begin{cases}\frac{x-1}{3}=-3\\\frac{y-1}{4}=-3\\\frac{z+2}{5}=-3\end{cases}}\) => \(\hept{\begin{cases}x-1=-9\\y-1=-12\\z+2=-15\end{cases}}\) => \(\hept{\begin{cases}x=-8\\x=-11\\x=-13\end{cases}}\)
Vậy ...
\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)
\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)
\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)
\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)
Vậy ...
Có: \(2x=3y=5z\)
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-33}{31}\)
=> \(\begin{cases}x=-\frac{495}{31}\\y=-\frac{330}{31}\\z=-\frac{198}{31}\end{cases}\)
a) 2x = 3y = 5z
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số = nhau , ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{-33}{10}\)
=> x = 3.(-33/10) = -99/10
y = 5.(-33/10) = -165/10
z = 2.(-33/10) = -66/10
|x-1| + |4-x| = 3
Áp dụng bất đẳng thức ta có:
|x-1| + |4-x | \(\ge\)|x-1+ 4-x| = 3
Dấu = xảy ra khi và chỉ khi : (x-1)(4-x) \(\ge\)0
\(\Rightarrow\) 1\(\le\)x \(\le\)4
Vậy 1\(\le\)x \(\le\)4 là giá trị cần tìm
Ta sử dụng máy tính
B1:Bấm \(\frac{43}{30}\) bấm = bấm tiếp kết hợp SHIFT S<=>D
Ta thấy có kết quả \(_{1\frac{13}{30}}\)bấm trừ 1 bấm =
B2 :Bấm tiếp nút x-1 bấm = bấm tiếp SHIFT S<=>D sẽ có là \(2\frac{4}{13}\) . 2 chính là x.
B3:Bấm trừ 2 bấm = bấm x-1 bấm = bấm tiếp SHIFT S<=>D sẽ có là \(3\frac{1}{4}\).Vậy y=3; z=4
Vậy x=2 ; y=3 ; z=4
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
\(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.8=16\\y=2.12=24\\z=2.15=30\end{matrix}\right.\)
Ta có:
\(\frac{x}{4}-\frac{1}{y}=\frac{1}{2}\)
=> \(\frac{xy-4}{4y}=\frac{1}{2}\)
=> (xy - 4).2 = 4y
=> xy - 4 = 2y
=> xy - 2y = 4
=> y.(x - 2) = 4
Ta có bảng sau:
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (3;4) ; (1;-4) ; (4;2) ; (0;-2) ; (6;1) ; (-2;-1)
Ta có: \(\frac{1}{y}=\frac{x}{4}-\frac{1}{2}\Rightarrow\frac{1}{y}=\frac{x-2}{4}\)
\(\Rightarrow y\left(x-2\right)=4=4.1=\left(-4\right).\left(-1\right)=\left(-2\right).\left(-2\right)\)
\(\Rightarrow x,y\in Z\Rightarrow\left(x-2\right)\in Z\)
\(\Rightarrow y=4;x-2=1\Rightarrow y=4;x=3\)
\(\Rightarrow y=1;x-2=4\Rightarrow y=1;x=6\)
\(\Rightarrow y=-1;x-2=4\Rightarrow y=-1;x=6\)
\(\Rightarrow y=-2;x-2=-2\Rightarrow y=-2;x=0\)
\(\Rightarrow y=2;x-2=2\Rightarrow y=2;x=4\)