Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2^{x+1}.\left(-3\right)^y=12^x\)
\(\Rightarrow2^{x+1}.\left(-3\right)^y=\left(3.4\right)^x\)
\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.2^{2x}\)
\(\Rightarrow2^{x+1}.\left(-1\right)^y.3^y=3^x.2^{2x}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=y=1\end{matrix}\right.\)
Vậy x=1 , y=1
|x-2|.y+|x-2|-17=0
<=>|x-2|.y+|x-2|=17
<=>|x-2|.(y+1)=17=1.17=17.1=(-1).(-17)=(-17).(-1)
Ta có: |x-2| và y+1 là ước của 17
Chú ý rằng |x-2| >= 0 với mọi x nên |x-2| là ước dương của 17,từ đó suy ra y+1 cũng là ước dương của 17
=>|x-2|.(y+1)=1.17=17.1
+)|x-2|=1 và y+1=17
=>x-2=-1 hoặc x-2=1 và y+1=17
=>x=1 hoặc x=3 và y=16
+)|x-2|=17 và y+1=1
=>x-2=-17 hoặc x-2=17 và y+1=1
=>x=-15 hoặc x=19 và y=0
Vậy ..........................
Đáp án C
Phương pháp:
- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.
Cách giải:
<=>
(2)
Đặt
=> f(t) đồng biến trên (0;+∞)
<=>
<=>
Khi đó,
vì
Vậy Pmax = 1 khi và chỉ khi
vì (x-2)^2*(y-3)^2=4
mà (x-2)^2 luôn>=0;(y-3)^2 luôn>=0;x,y là SNT nên
suy ra (x-2)^2*(y-3)^2=1*4=4*1(vì ko có số nào mũ 2=2)
trường hợp 1:(x-2)^2=1 và (y-3)^2=4
x= 3 y=5
trường hợp 2:(x-2)^2=4 và (y-3)^2=1
x=4(hợp số)loại
vậy số NT x là3;y là5