K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vì (x-2)^2*(y-3)^2=4

mà (x-2)^2 luôn>=0;(y-3)^2 luôn>=0;x,y là SNT nên 

suy ra  (x-2)^2*(y-3)^2=1*4=4*1(vì ko có số nào mũ 2=2)

trường hợp 1:(x-2)^2=1 và (y-3)^2=4

                     x=  3                   y=5

trường hợp 2:(x-2)^2=4 và  (y-3)^2=1

                          x=4(hợp số)loại

vậy số NT x là3;y là5

 

 

 

 

 

 

 

 

 

 

 

 

 

26 tháng 4 2016

phải (-3)^y chứ

14 tháng 8 2018

Ta có: \(2^{x+1}.\left(-3\right)^y=12^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=\left(3.4\right)^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.4^x\)

\(\Rightarrow2^{x+1}.\left(-3\right)^y=3^x.2^{2x}\)

\(\Rightarrow2^{x+1}.\left(-1\right)^y.3^y=3^x.2^{2x}\)

\(\Rightarrow\left[{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=y=1\end{matrix}\right.\)

Vậy x=1 , y=1

14 tháng 4 2016

|x-2|.y+|x-2|-17=0

<=>|x-2|.y+|x-2|=17

<=>|x-2|.(y+1)=17=1.17=17.1=(-1).(-17)=(-17).(-1)

Ta có: |x-2| và y+1 là ước của 17

Chú ý rằng |x-2| >= 0 với mọi x nên |x-2| là ước dương của 17,từ đó suy ra y+1 cũng là ước dương của 17

=>|x-2|.(y+1)=1.17=17.1

+)|x-2|=1 và y+1=17

=>x-2=-1 hoặc x-2=1 và y+1=17

=>x=1 hoặc x=3 và y=16

+)|x-2|=17 và y+1=1

=>x-2=-17 hoặc x-2=17 và y+1=1

=>x=-15 hoặc x=19 và y=0

Vậy ..........................

 

2 tháng 1 2018

Chọn đáp án C.

8 tháng 12 2017

Đáp án C

6 tháng 2 2019

Đáp án C

Phương pháp:

- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.

Cách giải:

 

<=>  

 

 

  (2)

Đặt  

=> f(t) đồng biến trên (0;+∞) 

<=>

<=>

Khi đó, 

vì 

Vậy Pmax = 1 khi và chỉ khi