Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có p^2-p=q^2-3q+2 <=> p(p-1)=(q-1)(q-2) (*)
Từ (*) suy ra p|(q-1)(q-2). Do p là snt nên p|(q-1) hoặc p|(q-2)
+) Xét p|(q-1). Đặt q=kp+1 (k E N*) thay vào (*):
kp(kp-1)=p(p-1) <=>k(kp-1)=p-1 <=> pk^2 -k-p+1=0.<=>(p-1)[p(k+1)-1]=0
=>k=1 (Do p(k+1)-1>0).
Lúc này q=p+1>=3. Do vậy p=2. q=3 (Do p;q nguyên tố) suy ra p^2+q^2=13 là snt
Xét p|(q-2) đặt q=tp+2 (t E N*) . Thay vào (*) biến đổi tương tự ta được . (t+1)[p(k-1)+1]=0 (vô lý nên loại)
Vậy đpcm
p2 - q2 = p - 3q + 2
4p2 - 4q2 = 4p - 12q + 8
4p2 - 4p + 1 = 4q2 - 12q + 9
(2p - 1)2 = (2q - 3)2
Mà 2p - 1 >0(p nguyên tố);2q - 3 >0(q nguyên tố)
Do đó 2p - 1 = 2q - 3 <=> p + 1 = q
Ta có q > 3 (vì p > 2) nên q lẻ, do đó p chẵn
=> p = 2. Nên q = p + 1 = 3
Vậy p2 + q2 = 22 + 32 = 4 + 9 = 13 là số nguyên tố
Mình chỉ biết là theo định lí Fermat lớn thì pt \(x^n+y^n=z^n\) ko có nghiệm nguyên khác 0 khi \(n\ge3\) chứng đừng nói tới số nguyên tố.
Do \(p^4+q^4=r^4\)mà p, q, r là số nguyên tố nên r > q, r > p
\(\Rightarrow\)Chắc chắn r là số lẻ.
\(\Rightarrow\)p hoặc q là số chẵn.
Giả sử p chẵn \(\Rightarrow\)p = 2.
Ta có:\(16+q^4=r^4\)
\(\Leftrightarrow r^4-q^4=16\)
\(\Leftrightarrow\left(r^2-q^2\right)\left(r^2+q^2\right)=16\)
\(\Rightarrow r^2-q^2,r^2+q^2\inƯ\left(16\right)\)
Ta lại có: \(r^2-q^2< r^2+q^2\)
\(\Rightarrow\hept{\begin{cases}r^2-q^2=1\\r^2+q^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}r=\frac{\sqrt{34}}{2}\\q=\frac{\sqrt{30}}{2}\end{cases}}}\)(Không thỏa mãn)
Vậy không có giá trị nào của p, q, r thỏa mãn yêu cầu đề bài.
Trước hết ta có thể giả sử q=2
* Nếu n là số nguyên dương lẻ thì ta có:
\(p^n+2^n=\left(p+2\right)\left(\frac{p^n+2^n}{p+2}\right)=r^2\) mà do r là số nguyên tố nên ta phải có:
\(p+2=\frac{p^n+2^n}{p+2}=r\)
Nếu n là số lẻ và \(n\ge3\) thì ta có: \(\frac{p^n+2^n}{p+2}>p+2\) từ đây ta dẫn đến một điều vô lý. Do đó, ta phải có: n=1.
* Nếu n là số chẵn, đặt n=2k , \(k\in Z^+\) thì từ đây ta có: \(\left(p^k\right)^2+\left(2^k\right)^2=r^2\) mà dễ thấy p , r phải phân biệt nên đây là bộ ba Phythagore nên tồn tại x,y:(x,y) = 1 và x,y khác tính chẵn lẻ thỏa mãn:
\(\hept{\begin{cases}p^k=2xy\\2^k=x^2-y^2\end{cases}}\) hoặc \(\hept{\begin{cases}2^k=2xy\\p^k=x^2-y^2\end{cases}}\)
Mà p là số nguyên tố nên trường hợp này không xảy ra.
Vậy ta phải có: n=1
Chúc bạn học tốt !!!
\(\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}=\frac{1}{a^2+a^2+b^2}+\frac{1}{b^2+b^2+c^2}+\frac{1}{c^2+c^2+a^2}\)
\(< =\frac{1}{9}\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{1}{9}\left(\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{1}{9}\left(\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{a^2}\right)\)(bđt svacxo)
\(=\frac{1}{9}\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{a^2}\right)=\frac{1}{9}\cdot3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(=\frac{1}{9}\cdot3\cdot\frac{1}{3}=\frac{1}{9}\cdot1=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}< =\frac{1}{9}\)(đpcm)
dấu = xảy ra khi \(\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}=\frac{1}{9}\Rightarrow a=b=c=3\)