\(p^2+2^P\)cũng là số nguyên tố

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

Mình chịu , mk mới hc lp 6 thôi mà bài này là bài lp 9 

31 tháng 5 2018

(*)\(P=2\Rightarrow P^2+2^P=2^2+2^2=4+4=8.\)( là hợp số )

(*)\(P=3\Rightarrow P^2+2^P=3^2+2^3=9+8=17\)( là số nguyên tố )

(*)\(P>3\Rightarrow P\)có dạng \(3k+1\)hoặc \(3k+2\)

+Nếu \(P=3k+1\Rightarrow P^2+2^P=\left(3k+1\right)^2+2^{3k+1}\)

             \(3k+1\equiv1\left(mod3\right)\)

\(\Rightarrow\left(3k+1\right)^2\equiv1\left(mod3\right)\)( 1 )

               \(2\equiv-1\left(mod3\right)\)

Do \(P\)là số nguyên tố lớn hơn 3 \(\Rightarrow P\)  lẻ

\(\Rightarrow2^{3k+1}\equiv-1\left(mod3\right)\)  ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\left(3k+1\right)^2+2^{3k+1}\equiv1+\left(-1\right)\left(mod3\right)\)

                          \(\Rightarrow\left(3k+1\right)^2+2^{3k+1}\equiv0\left(mod3\right)\)

                          \(\Leftrightarrow P^2+2^P⋮3\) ( là hợp số do \(P^2+2^P>3\) )

+Nếu \(P=3k+2\Rightarrow P^2+2^P=\left(3k+2\right)^2+2^{3k+2}\)

             \(3k+2\equiv-1\left(mod3\right)\)

\(\Rightarrow\left(3k+2\right)^2\equiv1\left(mod3\right)\)( 3 )

               \(2\equiv-1\left(mod3\right)\)

Do \(P\)là số nguyên tố lớn hơn 3 \(\Rightarrow P\)lẻ

\(\Rightarrow2^{3k+2}\equiv-1\left(mod3\right)\)( 4 )

Từ ( 3 ) và ( 4 ) \(\Rightarrow\left(3k+2\right)^2+2^{3k+2}\equiv1+\left(-1\right)\left(mod3\right)\)

                          \(\Rightarrow\left(3k+2\right)^2+2^{3k+2}\equiv0\left(mod3\right)\)

                           \(\Leftrightarrow P^2+2^P⋮3\)( là hợp số )

Vậy \(P=3.\)

13 tháng 10 2019

p chia 3 dư 1 => p2+2 chia hết cho 3 mà p+2 là số nguyên tố => p2+2 =3 => p=1 => vô lý

p chia 3 dư 2 => p2+2 chia hết cho 3 => vô lý

p chia hết cho 3 mà p là số nguyên tố => p=3 => p2+2=11 (đúng) và p3+p2+1=37( đúng)

=> p=3

 
23 tháng 11 2018

\(p^2-p=q^2-3q+2\Leftrightarrow p\left(p-1\right)=\left(q-1\right)\left(q-2\right)⋮2\)=> q>p

TH1: p=2 => q=3 thỏa mãn

TH2: p>2

mà p nguyên tố  lẻ => p-1 chia hết cho 2

và p-1 chia hết cho (q-1)(q-2) => p-1> (q-1)(1-2) vô lí 

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

1 tháng 11 2018

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha 

9 tháng 2 2016

Ta xét một số CP khi chia 7 chỉ có thể dư 0;1;2;4

xét p=7 dễ thấy đó là số cần tìm

giả sử p2p2 chia 7 dư 1 =>  3p2+43p2+4 chia hết cho 7 và lớn hơn 7 nên vô lí

tương tự với các TH p2p2 chia 7 dư 2, dư 4, ta đều suy ra điều vô lí

=> p chia hết cho 7 nên p=7

b/ biến đổi biểu thức đã cho trở thành 3(x−3)2+(3y2+2)(z2−6)=423(x−3)2+(3y2+2)(z2−6)=42

từ biểu thức trên suy ra z2−6z2−6 chia hết cho 3

xét z <3, ta có:

z=2=>z2−6=−2z2−6=−2 không chia hết cho 3

z=1=> z2−6=−5z2−6=−5 không chia hết cho 3

suy ra z≥3z≥3 => (3y2+2)(z2−6)>0(3y2+2)(z2−6)>0

suy ra (x−3)2≤9(x−3)2≤9 lần lượt xét các giá trị của (x−3)2(x−3)2 là 0;1;2;3 sau đó dựa vào (3y2+2)(3y2+2) chia 3 dư hai, ta tìm đk 3 cặp nghiệm:

(x;y;z)=(0;1;3);(6;1;3);(3;2;3)

Duyệt nha