Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5:
Các số nguyên tố a , b , c thỏa mãn : b - a = c - b = 2 là:
a = 3 ; b = 5 ; c = 7
~~ BN K HỘ MK NHÉ! - CHÚC BN HỌC TỐT~~
a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750
(x+x+...+x)+(1+2+3+...+100)=5750
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=5750-5050
x.100=700
x =700:100
x = 7
Vậy x = 7
c) trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm.
Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt
ab+2a-b=3
a(b+2)-b=3
a(b+2)-b+2=3+2
(b+2)(a-1)=5
sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)
Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\)
ta có 3494 = 2.
Bài giải : Giả sử a < b < c, ta xét 3 trường hợp như sau :
TH1: Nếu a = 2; b =3; c = 5 thì a2 + b2 + c2 = 38 ( không phải số nguyên tố ) (1)
TH2: Nếu a = 3; b = 5; c = 7 thì a2 + b2 + c2 = 83 ( thỏa mãn yêu cầu của đề bài ) ( 2)
TH3: Nếu a,b,c > 3 => a,b,c không chia hết đc cho 3
=> a2 = 1(mod3); b2 = 1(mod3); c2 = 1(mod3) => a2 + b2 + c2 = 3(mod3) a2 + b2 + c2 chia hết cho 3 (3)
=> Kết luận: Từ (1);(2);(3) ta có thể suy ra chỉ có duy nhất là 3 số là ta cần tìm - thỏa mãn yêu cầu của đề bài là: 3,5 và 7 .