Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải : Giả sử a < b < c, ta xét 3 trường hợp như sau :
TH1: Nếu a = 2; b =3; c = 5 thì a2 + b2 + c2 = 38 ( không phải số nguyên tố ) (1)
TH2: Nếu a = 3; b = 5; c = 7 thì a2 + b2 + c2 = 83 ( thỏa mãn yêu cầu của đề bài ) ( 2)
TH3: Nếu a,b,c > 3 => a,b,c không chia hết đc cho 3
=> a2 = 1(mod3); b2 = 1(mod3); c2 = 1(mod3) => a2 + b2 + c2 = 3(mod3) a2 + b2 + c2 chia hết cho 3 (3)
=> Kết luận: Từ (1);(2);(3) ta có thể suy ra chỉ có duy nhất là 3 số là ta cần tìm - thỏa mãn yêu cầu của đề bài là: 3,5 và 7 .
Nếu a = 2; b = 2 => c = 22 + 1 = 5 (Chọn)
Nếu a > 3 thì ab lẻ => ab + 1 là số chẵn => c chẵn Mà c là số nguyên tố => không có số nguyên tố thỏa mãn
Vậy a = b = 2 ; c = 5
Ta có:ab+1=c
=>ab=c-1
*Xét c=2
=>ab=2-1=1=>ab=1
Vì a>1,b>1
=>ab>11=1
=>11>1
=>1>1
=>Vô lí
*Xét c>2
=>c là số lẻ
=>c-1 là số chẵn
=>ab là số chẵn
=>a là số chẵn
=>a=2
=>2b+1=c
Với b=2=>c=22+1=4+1=5
Với b>2
=>b lẻ
=>2b:3(dư 2)
=>2b+1 chia hết cho 3
=>c chia hết cho 3
=>c=3
=>2b=3-1=2
=>b=1
=>Vô lí
Vậy a=2,b=2,c=5
Ta có abc = 3. (a+b+c) \(\Rightarrow\)abc chia hết cho 3
Giả sử a chia hết cho 3. Do a là số nguyên tố \(\Rightarrow\) a=3
3bc=3(3+b+c) \(\Rightarrow\) bc=3+b+c
bc-b = 3+c \(\Rightarrow\) b(c-1) = 4+(c-1) \(\Rightarrow\) (b-1)(c-1) = 4
\(\Rightarrow\) (b,c) \(\in\) {(3,3);(2,5)}
Vậy (a,b,c) \(\in\) {(3,3,3) ; (2,3,5)}
Ta có abc = 3. (a+b+c)
⇒
⇒abc chia hết cho 3
Giả sử a chia hết cho 3. Do a là số nguyên tố
⇒
⇒ a=3
3bc=3(3+b+c)
⇒
⇒ bc=3+b+c
bc-b = 3+c
⇒
⇒ b(c-1) = 4+(c-1)
⇒
⇒ (b-1)(c-1) = 4
⇒
⇒ (b,c)
∈
∈ {(3,3);(2,5)}
Vậy (a,b,c
∈
∈ {(3,3,3) ; (2,3,5)}
a=3 b=5 c=7
Câu 5:
Các số nguyên tố a , b , c thỏa mãn : b - a = c - b = 2 là:
a = 3 ; b = 5 ; c = 7
~~ BN K HỘ MK NHÉ! - CHÚC BN HỌC TỐT~~