\(B=n^2-n+13\) là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
5 tháng 3 2021

\(n^2-n+13=m^2\)

\(\Leftrightarrow4n^2-4n+52=4m^2\)

\(\Leftrightarrow\left(2n-1\right)^2+51=4m^2\)

\(\Leftrightarrow\left(2m-2n+1\right)\left(2m+2n-1\right)=51=1.51=3.17\)

Xét bảng: 

2m-2n+1151317
2m+2n-1511173
m13 (tm)13 (tm)5 (tm)5 (tm)
n13 (tm)-12 (tm)4 (tm)-3 (tm)
5 tháng 3 2021

thầy sai đâu đấy 

\(\left(2n-1\right)^2+51=4m^2\Leftrightarrow\left(2n-1\right)^2-4m^2=-51\)

\(\Leftrightarrow\left(2n-1-2m\right)\left(2n-1+2n\right)=-51\)

vì \(2n-1+2m>2n-1-2m\)

\(\left(2n-1-2m\right)\left(2n-1+2n\right)=1.\left(-51\right)=\left(-51\right).1=3.\left(-17\right)=\left(-17\right).3\)

TH1 : \(\hept{\begin{cases}2n-1-2m=-51\\2n-1+2m=1\end{cases}}\)chứ ạ ? 

rồi xét TH còn lại, mong thầy giải đáp giúp, có gì sai thầy cho em xin lỗi 

5 tháng 4 2019

Để A là số chính phương thì :

\(n^2-n+13=k^2\)\(\left(k\inℕ\right)\)

\(\Leftrightarrow4n^2-4n+52=4k^2\)

\(\Leftrightarrow\left(2n\right)^2-2\cdot2n\cdot1+1-4k^2+51=0\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2k\right)^2=-51\)

\(\Leftrightarrow\left(2n-2k-1\right)\left(2n+2k-1\right)=-51\)

Dễ thấy \(2n-2k-1< 2n+2k-1\)( vì \(k\inℕ\))

TH1 : \(\hept{\begin{cases}2n-2k-1=-51\\2n+2k-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-25\\n+k=1\end{cases}\Leftrightarrow\hept{\begin{cases}n=-12\\k=13\end{cases}}}}\)

TH2 : \(\hept{\begin{cases}2n-2k-1=-1\\2h+2k-1=51\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=0\\n+k=26\end{cases}\Leftrightarrow\hept{\begin{cases}n=13\\k=13\end{cases}}}}\)

TH3 : \(\hept{\begin{cases}2n-2k-1=-3\\2n+2k-1=17\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-1\\n+k=9\end{cases}\Leftrightarrow\hept{\begin{cases}n=4\\k=5\end{cases}}}}\)

TH4 ; \(\hept{\begin{cases}2n-2k-1=-17\\2n+2k-1=3\end{cases}\Leftrightarrow\hept{\begin{cases}n-k=-8\\n+k=2\end{cases}\Leftrightarrow\hept{\begin{cases}n=-3\\k=5\end{cases}}}}\)

Vậy....

5 tháng 4 2019

Đặt \(A=n^2-n+13=k^2\)

\(\Rightarrow4n^2-4n+52=4k^2\)

\(\Rightarrow\left(4n^2-4n+1\right)+51=4k^2\)

\(\Rightarrow\left(2k\right)^2-\left(2n-1\right)^2=51\)

\(\Rightarrow\left(2k-2n+1\right)\left(2k+2n-1\right)=51\)

Bạn xét ước của 51 rồi lập bảng nốt nha!

13 tháng 8 2018

Bấm nghiệm đi

13 tháng 8 2018

Thành Vinh Lê . Có ẩn n thì bấm nghiệm kiểu j ạ. Giúp vs ạ

12 tháng 3 2021

Đặt

\(a^2=n^2-n+2\)

Ta có:

\(\Rightarrow\left(n-1\right)^2< a^2=n^2-n+2< \left(n+1\right)^2\)

\(\Rightarrow n^2-n+2=n^2\)

\(\Leftrightarrow n=2\)