Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để E nguyên thì \(x+5⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{3;1;9;-5\right\}\)
Để\(A\inℤ\)
thì\(n+2⋮n-3\Leftrightarrow\left(n-3\right)+5⋮n-3\Rightarrow5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\Leftrightarrow n\in\left\{4;8;2;-2\right\}\)
a, Ta có : \(A=\frac{n+2}{n-3}=\frac{n-3+5}{n-3}=1+\frac{5}{n-3}\)
Để A có giá trị nguyên thì : \(\frac{5}{n-3}\)phải có giá trị nguyên.
Lại có : \(\frac{5}{n-3}\)có giá trị nguyên khi và chỉ khi : \(5:n-3\)
\(\Rightarrow n-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-2;2;4;8\right\}\)
Vậy:............
b, Để A đạt giá trị lớn nhất thì : \(1+\frac{5}{n-3}\)đạt giá trị lớn nhất
\(1+\frac{5}{n-3}\)lớn nhất khi và chỉ khi : \(\frac{5}{n-3}\)lớn nhất
Khi đó : \(n-3\)nhỏ nhất
Do : \(n-3\ne0\Rightarrow n-3=1\Rightarrow n=4\)
Vậy :......
\(\frac{n^3+2n+2}{n+3}=\frac{\left(n^3+9n^2+27n+27\right)-9\left(n^2+6n+9\right)+29\left(n+3\right)-31}{n+3}\)
\(=\frac{\left(n+3\right)^3-9\left(n+3\right)^2+29\left(n+3\right)-31}{n+3}\)
\(=\left(n+3\right)^2-9\left(n+3\right)+29-\frac{31}{n+3}\)
Để phân số trên nhận giá trị nguyên thì \(\left(n+3\right)\inƯ\left(31\right)\)
Từ đó bạn liệt kê ra nhé :)
Giải:
Để \(\frac{n^3+2n+2}{n+3}\in Z\Rightarrow n^3+2n+2⋮n+3\Rightarrow n^3⋮n+3;2n+2⋮n+3\)
Ta có:
\(n^3⋮n+3\)
\(n^3+3-3⋮n+3\)
\(\Rightarrow-3⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm3\right\}\)
+) \(n+3=1\Rightarrow n=-2\)
+) \(n+3=-1\Rightarrow n=-4\)
+) \(n+3=3\Rightarrow n=0\)
+) \(n+3=-3\Rightarrow n=-6\)
Ta có:
\(2n+2⋮n+3\)
\(\Rightarrow2n+6-4⋮n+3\)
\(\Rightarrow n\left(n+3\right)-4⋮n+3\)
\(\Rightarrow-4⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm4\right\}\)
Vì phần trên ta đã tính kết quả \(n+3=\pm1\) nên ta chỉ xét \(n+3=\pm2\) và\(n+3=\pm4\)
+) \(n+3=2\Rightarrow n=-1\)
+) \(n+3=-2\Rightarrow n=-5\)
+) \(n+3=4\Rightarrow n=1\)
+) \(n+3=-4\Rightarrow n=-7\)
Vậy \(n\in\left\{-2;-4;0;-6;-1;-5;1;-7\right\}\)
Bạn xem kĩ xem có đúng ko nhé
Để \(\frac{n+3}{n+2}=\frac{n+2+1}{n+2}=1+\frac{1}{n+2}\in Z\)
\(\Leftrightarrow\frac{1}{n+2}\in Z\Leftrightarrow n+2\inƯ\left(1\right)\Leftrightarrow n+2\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{-3;-1\right\}\)
để \(\frac{n+3}{n+2}\in Z\Rightarrow\)n+3 chia hết cho n+2
=>(n+2)+1 chia hết cho n+2
=>1 chia hết n+2
\(\Rightarrow n+2\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-3;-1\right\}\)
vậy n=-3;-1