Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 g) \(xyz=x+y+z+2\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)=\Sigma_{cyc}\left(x+1\right)\left(y+1\right)\)
\(\Rightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\) .Đặt \(\frac{1}{x+1}=a;\frac{1}{y+1}=b;\frac{1}{z+1}=c\Rightarrow x=\frac{1-a}{a}=\frac{b+c}{a};y=\frac{c+a}{b};z=\frac{a+b}{c}\) vì a + b + c = 1.
Khi đó \(P=\Sigma_{cyc}\frac{1}{\sqrt{\frac{\left(b+c\right)^2}{a^2}+2}}=\Sigma_{cyc}\frac{a}{\sqrt{2a^2+\left(b+c\right)^2}}\)
\(=\sqrt{\frac{2}{9}+\frac{4}{9}}.\Sigma_{cyc}\frac{a}{\sqrt{\left[\left(\sqrt{\frac{2}{9}}\right)^2+\left(\sqrt{\frac{4}{9}}\right)^2\right]\left[2a^2+\left(b+c\right)^2\right]}}\)
\(\le\sqrt{\frac{2}{3}}\Sigma_{cyc}\frac{a}{\sqrt{\left[\frac{2}{3}a+\frac{2}{3}b+\frac{2}{3}c\right]^2}}=\frac{\sqrt{6}}{2}\left(a+b+c\right)=\frac{\sqrt{6}}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=2\)
3c) Nhìn quen quen, chả biết có lời giải ở đâu hay chưa nhưng vẫn làm:D (Em ko quan tâm nha!)
\(P=3-\Sigma_{cyc}\frac{2xy^2}{xy^2+xy^2+1}\ge3-\Sigma_{cyc}\frac{2xy^2}{3\sqrt[3]{\left(xy^2\right)^2}}=3-\frac{2}{3}\Sigma_{cyc}\sqrt[3]{\left(xy^2\right)}\)
\(\ge3-\frac{2}{3}\Sigma_{cyc}\frac{x+y+y}{3}=3-\frac{2}{3}\left(x+y+z\right)=3-2=1\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
\(\Leftrightarrow\left\{{}\begin{matrix}b^2+c^2=a^2\\2bc=4a+4\left(b+c\right)\end{matrix}\right.\)
\(\Rightarrow\left(b+c\right)^2=a^2+4a+4\left(b+c\right)\)
\(\Leftrightarrow\left(b+c\right)^2-4\left(b+c\right)+4=a^2+4a+4\)
\(\Leftrightarrow\left(b+c-2\right)^2=\left(a+2\right)^2\)
\(\Leftrightarrow b+c-2=a+2\)
\(\Rightarrow a=b+c-4\)
\(\Rightarrow2\left(2b+2c-4\right)=bc\)
\(\Leftrightarrow bc-4b-4c+8=0\)
\(\Leftrightarrow b\left(c-4\right)-4\left(c-4\right)-8=0\)
\(\Leftrightarrow\left(b-4\right)\left(c-4\right)=8\)
Pt ước số cơ bản
Lời giải:
Có: \(\left\{\begin{matrix} a+b+c=9\\ a^2+b^2+c^2=27\end{matrix}\right.\Rightarrow \left\{\begin{matrix} (a+b+c)^2=81\\ a^2+b^2+c^2=27\end{matrix}\right.\)
\(\Rightarrow (a+b+c)^2-(a^2+b^2+c^2)=54\)
\(\Leftrightarrow 2(ab+bc+ac)=54\Leftrightarrow ab+bc+ac=27\)
Do đó: \(a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow \frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=0(*)\)
Ta thấy: \((a-b)^2; (b-c)^2; (c-a)^2\geq 0\forall a,b,c\in\mathbb{R}\)
Suy ra \((*)\) xảy ra khi và chỉ khi
\((a-b)^2=(b-c)^2=(c-a)^2=0\Leftrightarrow a=b=c\)
Khi đó: \(a=b=c=\frac{9}{3}=3\) (thỏa mãn)
\(P=(a-2)^{2015}+(b-3)^{2016}+(c-4)^{2017}=1^{2015}+0^{2016}+(-1)^{2017}\)
\(P=1+0+(-1)=0\)
?Amanda?, Phạm Lan Hương, Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Nguyễn Ngọc Lộc , @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @Trần Thanh Phương
giúp e với ạ! Cần trước 5h chiều nay! Cảm ơn mn nhiều!
Tranh thủ làm 1, 2 bài rồi ăn cơm:
1/ Đặt \(m=n-2008>0\)
\(\Rightarrow2^{2008}\left(369+2^m\right)\) là số chính phương
\(\Rightarrow369+2^m\) là số chính phương
m lẻ thì số trên chia 3 dư 2 nên ko là số chính phương
\(\Rightarrow m=2k\Rightarrow369=x^2-\left(2^k\right)^2=\left(x-2^k\right)\left(x+2^k\right)\)
b/
\(2\left(a^2+b^2\right)\left(a+b-2\right)=a^4+b^4\) \(\left(a+b>2\right)\)
\(\Rightarrow2\left(a^2+b^2\right)\left(a+b-2\right)\ge\frac{1}{2}\left(a^2+b^2\right)^2\)
\(\Rightarrow a^2+b^2\le4\left(a+b-2\right)\)
\(\Rightarrow\left(a-2\right)^2+\left(b-2\right)^2\le0\Rightarrow a=b=2\)
\(\Rightarrow x=y=4\)
Với mọi a,b∈Z+�,�∈�+ ta có: (a+b)2≤2(a2+b2)(�+�)2≤2(�2+�2) ⇔n4≤2(n3+2)⇔�4≤2(�3+2)
⇔n4−2n3−4≤0⇔n3(n−2)−4≤0(∗)⇔�4−2�3−4≤0⇔�3(�−2)−4≤0(∗)
+) Nếu n≥3�≥3 thì n3(n−2)−4≥n3−4>0�3(�−2)−4≥�3−4>0 (mâu thuẫn với (*))
⇒n∈{0;1;2}⇒�∈{0;1;2}
+) Với n=0⇒{a+b=0a2+b2=2⇒�=0⇒{�+�=0�2+�2=2⇒ không tồn tại a,b∈Z+�,�∈�+ thỏa mãn hệ phương trình.
+) Với n=1⇒{a+b=1a2+b2=3⇒�=1⇒{�+�=1�2+�2=3⇒ không tồn tại a,b∈Z+�,�∈�+ thỏa mãn hệ phương trình.
+) Với n=2⇒{a+b=4a2+b2=10⇔{a+b=4(a+b)2−2ab=10⇔{a+b=4ab=3�=2⇒{�+�=4�2+�2=10⇔{�+�=4(�+�)2−2��=10⇔{�+�=4��=3
Khi đó ta có hai số a,b�,� là nghiệm của phương trình: x2−4x+3=0⇔[x=1x=3�2−4�+3=0⇔[�=1�=3
⇒(a;b)∈{(1;3);(3;1)}.⇒(�;�)∈{(1;3);(3;1)}.
Vậy nghiệm của hệ phương trình đã cho là: (n;a;b)∈{(2;1;3);(2;3;1)}(�;�;�)∈{(2;1;3);(2;3;1)}
nếu đúng cho mình xin 1 tick nhé!!!!