K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(ab=3\left(a-b\right)\) 

<=> \(ab-3a+3b=0\) 

<=>\(\left(a+3\right)\left(b-3\right)=-9\) 

Đến đây bn tự giải nhé

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)

15 tháng 1 2018

vào link này tham khảo :  https://diendantoanhoc.net/topic/134969-tìm-tất-cả-các-cặp-số-nguyên-dương-a-và-b-sao-cho-fraca2-2ab2-là-số-nguyên/

6 tháng 9 2015

Ta có \(b\left(a^2-2\right)=a\left(ab+2\right)-2\left(a+b\right)\). Do \(a^2-2\vdots ab+2\) nên \(2\left(a+b\right)\vdots ab+2\to ab+2\le2a+2b\to\left(a-2\right)\left(b-2\right)\le2\)

Với \(a=1\to-\frac{1}{b+2}\in Z\), loại
Với \(a=2\to\frac{4}{2b+2}\in Z\to2b+2=4\to b=1\)

Với \(a=3\to\frac{7}{3b+2}\in Z\to3b+2=7\to\)  loại
Với \(a=4\to\frac{14}{4b+2}\in Z\to4b+2=14\to b=3.\)
Với \(a\ge5\to b-2\le\frac{2}{a-2}<1\to b\le2\to b=1,2\). Với \(b=1\to\frac{a^2-2}{a+2}\in Z\to a-2+\frac{2}{a+2}\in Z\to a+2=2\to\)  loại.  
Nếu \(b=2\to\frac{a^2-2}{2a+2}\in Z\to\frac{a^2-2}{a+1}\in Z\to\frac{3}{a+1}\in Z\to a+1=3\to\)  loại.
Vậy các cặp số \(\left(a,b\right)\) nguyên dương thoả mãn là \(\left(2,1\right);\left(4,3\right).\)

6 tháng 4 2020

đua ha đô kho qua chung

26 tháng 8 2021

Sao cho gì vậy bạn ?

26 tháng 8 2021

là số nguyên

 

5 tháng 4 2020

Câu hỏi của NGUUYỄN NGỌC MINH - Toán lớp 9 - Học toán với OnlineMath