\(a^3+b^3=2\). Tìm các giá trị nguyên của a+b

 <...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2019

1/ \(4\left(a^2-ab+b^2\right)⋮3\)

\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮3\)

\(\Rightarrow2a-b⋮3\)

\(\Rightarrow\left(2a-b\right)^2⋮9\)

\(\Rightarrow3b^2⋮9\)

\(\Rightarrow b⋮3\)

\(\Rightarrow a⋮3\)

16 tháng 1 2019

Câu 2 làm hoi dài nên lười

29 tháng 7 2016

\(a+b+c=\frac{1}{abc}\Rightarrow bc=\frac{1}{a\left(a+b+c\right)}\)

\(P=a\left(a+b+c\right)+bc=a\left(a+b+c\right)+\frac{1}{a\left(a+b+c\right)}\ge2\text{ }\left(\text{bđt Côsi}\right)\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}a+b+c=\frac{1}{bc}\\a\left(a+b+c\right)=1\end{cases}}\)

Chẳng hạn như \(a=-1+\sqrt{2};\text{ }b=c=1.\)

Vậy \(\text{Min }P=2.\)

2 tháng 8 2018

\(A=\frac{2x+3}{x+1}=\frac{2\left(x+1\right)+1}{x+1}=2+\frac{1}{x+1}\)

để \(A\in Z\)<=> \(\frac{1}{x+1}\in Z\)

 mà \(x\in Z\)=> \(x+1\inƯ\left(1\right)\)

                     <=> \(x+1\in\left(1;-1\right)\)

                      <=> \(x\in\left(0;-2\right)\)

\(B=\frac{x^2+2x+3}{x+2}=\frac{x\left(x+2\right)+3}{x+2}=x+\frac{3}{x+2}\)

để \(B\in Z\)<=> \(\frac{3}{x+2}\in Z\)

mà \(x\in Z\)=> \(x+2\inƯ\left(3\right)\)

                     <=> \(x+2\in\left(1;-1;3;-3\right)\)

                     <=> \(x\in\left(-1;-3;1;-5\right)\)

16 tháng 5 2017

Đặt \(\hept{\begin{cases}a+b+c=p\\ab+bc+ca=q\\abc=r\end{cases}}\)

Thì ta có:

\(\hept{\begin{cases}p^2-2q=3\\A=2p+\frac{q}{r}\end{cases}}\)

Ta có: \(3pr\le q^2\) (cái này dễ thấy nên mình không chứng minh nha)

\(\Leftrightarrow\frac{q}{r}\ge\frac{3p}{q}=\frac{6p}{2q}=\frac{6p}{p^2-3}\)

Thế vô A ta được

\(A=2p+\frac{q}{r}\ge2p+\frac{6p}{p^2-3}\)

Ta chứng minh \(2p+\frac{6p}{p^2-3}\ge9\)

\(\Leftrightarrow2p^3-9p^2+27\ge0\)

\(\Leftrightarrow\left(p-3\right)^2\left(2p+3\right)\ge0\) (đúng)

Vậy GTNN là A = 9

15 tháng 5 2017

bài này vừa read buổi tối này nek, xài UCT ,tiện thể cho hỏi lun do máy t lỗi hay do hệ thống z , k load bài nào luôn 

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

22 tháng 8 2017

Ta có: (xy)2=(x+y)24xy=20124xy(x−y)2=(x+y)2−4xy=2012−4xy

Như thế, để tìm GTNN,GTLN của xyxy, tương đương với việc ta tìm GTLN,GTNN của A=(xy)2=(|xy|)2A=(x−y)2=(|x−y|)2 hay cần tìm GTLN,GTNN của |xy||x−y|

Không mất tính tổng quát giả sử: xyx≥y thì: x101x≥101y100y≤100

Khi đó: |xy|=xy=x+y2y=2012y|x−y|=x−y=x+y−2y=201−2y

Ta có: 1y1001≤y≤100 nên: 1|xy|=2012y1991≤|x−y|=201−2y≤199

Lập luận đi ngược lại thì tìm được các cực trị

dùng cô si thôi

\(a^4+b^2\ge2a^2b;b^4+c^2\ge2b^2c;c^4+a^2\ge2c^2a\)

\(a^2b^2+a^2\ge2a^2b;b^2c^2+b^2\ge2b^2c;c^2a^2+c^2\ge2c^2a\)

từ 2 cái trên =>\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{3\left(ab+bc+ca\right)}{\left(a^2+b^2+c^2\right)^2}\)

đặt t=a2+b2+c2\(\ge\frac{\left(a+b+c\right)^2}{3}=3\)

\(\Rightarrow\left[2\left(t-\frac{1}{2}\right)^2-\frac{19}{2}\right]\left(t-3\right)\ge0\)

\(\Leftrightarrow2t^3-8t^2-3t+27\ge0\)

\(\Leftrightarrow\frac{2t^3-3t+27}{2t^2}\ge4\Rightarrow P\ge4\)