Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
Bài 1:a)Vì p là số nguyên tố nên p=2,3,5,7,...
-Với p=2 thì p+10=12(hợp số)\(\rightarrow\)loại
-Với p=3 thì p+10=13, p+20=23 (số nguyên tố)\(\rightarrow\)chọn
-Với p>3 và p là số nguyên tố nên p không chia hết cho 3;p+10,p+20>3 nên:
Nếu p=3k+1 thì p+20=3k+21\(⋮\)3(hợp số)\(\rightarrow\)loại
Nếu p=3k+2 thì p+10=3k+12\(⋮\)3(hợp số)\(\rightarrow\)loại
Vậy p=3 là giá trị cần tìm
Còn lại bạn cứ tiếp tục nhé
a^2+b^2 = 1+4 suy ra a^2 =1 và b^2 =4 hay a= 1; a = -1; b=2; b=-2. Em tự xếp thành các cặp nhé
Giả sử a,b đều là số nguyên tố lớn hơn 3
=> a+b và a-b đều chẵn
Mà chỉ có 1 số nguyên tố chẵn là 2 => a+b=2 ; a-b=2
=>b=0. Mà 0 ko là số nguyên tố => b = 2
Ta có: a-2 ; a ;a+2 đều là số nguyên tố
=> a-2=3 ; a=5 ; a+2=7
=> a=5. Vậy a=5 b=7
để a-b là số nguyên tố thì a phải là số nguyên tố lớn hơn 3 (vì a=3 thì a-b=1 nếu b là số nguyên tố nhỏ nhất)
nếu a = 5 và b là số nguyên tố nhỏ nhất thì a+b=7 và a-b=3 là số nguyên tố (chọn)
nếu a là số nguyên tố lớn hơn 5 thì a+b hoặc a-b sẽ là hợp số
vậy a=5,b=2
Các cặp số nguyên:
Trường hợp 1: \(2^2+1^2=4+1=5\)
Trường hợp 2: \(1^2+2^2=1+4=5\)
Vậy cập số \(a\in\left(2;1\right)\); \(b\in\left(1;2\right)\)
Bài này thì chỉ cần xét các trường hợp \(5=1+4=4+1\) thôi (2 số hạng đều là số chính phương)
Lời giải
Ta có: \(5=1+4=4+1\)
Nên \(a^2;b^2\in\left\{1;4\right\}\Leftrightarrow a;b\in\left\{\pm1;\pm2\right\}\)
Vậy \(\left(a;b\right)=\left\{\left(1;2\right),\left(-1;-2\right),\left(-1;2\right),\left(-2;1\right)\right\}\) và các hoán vị của nó.
{a;b}={1;2} hoặc {2;1} hoặc {-1;-2} hoặc {-2;-1} hoặc {1;-2} hoặc {-1;2} hoặc {-2;1} hoặc {2;-1}
Đầy đủ nhá