\(a^2-2ab+2b^2-4a+7< 0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:

a2 -2ab + 2b2 - 4a + 8 < hoặc = 0

<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0

<=> ( a-2b)2 + (a-4)2 < hoặc = 0

Dấu "=" xảy ra khi :

a=4;b=2

2 tháng 3 2022

Tham khảo nx nhaa

8 tháng 6 2020

Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:

a2 -2ab + 2b2 - 4a + 8 < hoặc = 0

<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0

<=> ( a-2b)2 + (a-4)2 < hoặc = 0

Dấu "=" xảy ra khi :

a=4;b=2

26 tháng 7 2021

Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:

a2 -2ab + 2b2 - 4a + 8 < hoặc = 0

<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0

<=> ( a-2b)2 + (a-4)2 < hoặc = 0

Dấu "=" xảy ra khi :

a=4;b=2

9 tháng 4 2019

a=0:b=0

17 tháng 7 2018

Câu a là +6b đúng k ạ?

17 tháng 7 2018

+6a nha

18 tháng 9 2018

a) \(a^2+25b^2+17+10b-8a=0\)

\(\Rightarrow a^2-8a+16+25b^2+10b+1=0\)

\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2=0\)

\(\left(a-4\right)^2\ge0\) với mọi a

\(\left(5b+1\right)^2\ge0\) với mọi b

\(\Rightarrow\left(a-4\right)^2+\left(5b+1\right)^2\ge0\) với mọi a,b

\(\left(a-4\right)^2+\left(5b+1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-4\right)^2=0\\\left(5b+1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a-4=0\\5b+1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\5b=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=-\dfrac{1}{5}\end{matrix}\right.\)

8 tháng 12 2018

sáng 9/12/2018 là mình phải nộp bài rồi. Giups mình nhé mấy bạn.

19 tháng 2 2017

1 . nhá: cách làm: phân tích đề bài ta cho làm sao xuất hiện hiện các hằng đẳg thuức" \(\left(a-b\right)^3=b\left(a-b\right)^2\Leftrightarrow\frac{\left(a-b\right)^3}{\left(a-b\right)^2}=b\Rightarrow a=2b\)

từ đó chỗ nào có "a" thay vào P thì ta sẽ đc kq là 1