Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a + b + 2a2 + 2b2 ≥ \(2ab+2a\sqrt{b}+2b\sqrt{a}\)
⇔ a + b + 2a2 + 2b2 - \(2ab-2a\sqrt{b}-2b\sqrt{a}\) ≥ 0
⇔ a2 - 2ab + b2 + a2 - 2a\(\sqrt{b}+b+b^2-2b\sqrt{a}+a\) ≥ 0
⇔ ( a - b)2 + ( a - \(\sqrt{b}\) )2 + ( b - \(\sqrt{a}\))2 ≥ 0 ( Luôn đúng )
1, hiển nhiên a+b>0
có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
a^2 + 2ab + 2b^2 - 2b= 8
<=> (a^2 + 2ab + b^2) + (b^2 - 2b + 1)=9
<=>(a + b)^2 + (b - 1)^2=9
Vì (b - 1)^2 >=0 nên (a + b)^2 =< 9
=> a + b =< 3.
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2
Do a và b nguyên ta cộng 1 vào vế trái của BPT đã cho và được:
a2 -2ab + 2b2 - 4a + 8 < hoặc = 0
<=> 2a2 - 4ab + 4b2 - 8a + 16 < hoặc = 0
<=> ( a-2b)2 + (a-4)2 < hoặc = 0
Dấu "=" xảy ra khi :
a=4;b=2