Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)
Áp dụng tc dãy tỉ số bằng nhau : \(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow\begin{cases}a^2=16\\b^2=36\\c^2=64\end{cases}\) \(\Rightarrow\begin{cases}a=\pm4\\b=\pm6\\c=\pm8\end{cases}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{c^2}{16}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
\(\Rightarrow a^2=16;b^2=36;c^2=64\)
\(\Rightarrow\) a = + 4; b = + 6; c = + 8
Theo bài ra \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}nên\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)và \(a^2-b^2+2c^2=108\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=>a^2=16=>a=cộng trừ 4
b^2=36=>b=cộng trừ 6
2c^2=128=> c^2=64=>c= cộng trừ 8
nếu đúng tick đúng cho mik nhá
a/2 = b/3 = c/4 =>a^2/4 = b^2/9 =2c^2/32
Áp dụng dãy tỉ số bằng nau ta có :
a^2/4 = b^2/9 = 2c^2/32 = a^2-b^2+2c^2/4-9+32 = 108/27 = 4
=> a= 4.2 = 8
=> b = 4.3 = 12
=> c = 4.4 = 16
Vậy............
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
a/2 = b/3 = c/4 =>a^2/4 = b^2/9 =2c^2/32
Áp dụng dãy tỉ số bằng nau ta có :
a^2/4 = b^2/9 = 2c^2/32 = a^2-b^2+2c^2/4-9+32 = 108/27 = 4
=> a= 4.2 = 8
=> b = 4.3 = 12
=> c = 4.4 = 16
a)Vì \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\left(1\right)\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{a}{35}=\frac{b}{30}=\frac{c}{48}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{a}{35}=\frac{2b}{60}=\frac{c}{48}=\frac{a-2b+c}{35-60+48}=\frac{46}{23}=2\)
\(\Rightarrow\begin{cases}\frac{a}{35}=2\\\frac{b}{30}=2\\\frac{c}{48}=2\end{cases}\)\(\Rightarrow\begin{cases}a=70\\b=60\\c=96\end{cases}\)
Vậy a=70;b=60;c=96
a) có \(\frac{a}{5}=\frac{b}{4}\)=> \(\frac{a^2}{25}=\frac{b^2}{16}\)
áp dụng t/c dãy tỉ số bằng nhau có:
\(\frac{a^2}{25}=\frac{b^2}{16}=\frac{a^2-b^2}{25-16}=\frac{1}{9}\)
=>\(\hept{\begin{cases}a^2=\frac{1}{9}.25\\b^2=\frac{1}{9}.16\end{cases}}\)=>\(\hept{\begin{cases}a^2=\frac{25}{9}\\b^2=\frac{16}{9}\end{cases}}\)=>\(\hept{\begin{cases}a=\frac{5}{3};\frac{-5}{3}\\b=\frac{4}{3};\frac{-4}{3}\end{cases}}\)
mà a,b cùng dấu
vậy : tự viết :))
a) a2-b2=1 <=> (a-b)(a+b)=1 (1)
\(\frac{a}{5}=\frac{b}{4}=\frac{a-b}{1}=\frac{a+b}{9}\)=> a+b=\(\frac{9b}{4}\), và a-b=\(\frac{b}{4}\)
Thay vào (1): \(\frac{9b}{4}.\frac{b}{4}=1\)<=> b2=\(\frac{16}{9}=\left(\frac{4}{3}\right)^2\)=> b=\(\frac{4}{3}^{ }\)
a=\(\frac{5}{4}.\frac{4}{3}=\frac{5}{3}\)