Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) MTC : \(2x\left(x+3\right)\left(x-3\right)\)
\(\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{3-2x}{x^2-9}=\frac{3-2x}{\left(x-3\right)\left(x+3\right)}=\frac{2x\left(3-2x\right)}{2x\left(x+3\right)\left(x-3\right)}\)
b ) MTC : \(2\left(-x\right)\left(x-1\right)^2\)
\(\frac{2x-1}{x-x^2}=\frac{2x-1}{-x\left(x-1\right)}=\frac{2\left(2x-1\right)\left(x-1\right)}{2\left(-x\right)\left(x-1\right)^2}\)
\(\frac{x+1}{2-4x+2x^2}=\frac{x+1}{2\left(x^2-2x+1\right)}=\frac{-x\left(x+1\right)}{2\left(-x\right)\left(x-1\right)^2}\)
a) MTC : \(\left(x+1\right)\left(x^2-x+1\right)\)
Quy đồng :
\(\frac{x-1}{x^3+1}=\frac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2x}{x^2-x+1}=\frac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\frac{2}{x+1}=\frac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
b ) MTC : \(10x\left(2y-x\right)\left(2y+x\right)\)
\(\frac{7}{5x}=\frac{7.2.\left(2y-x\right)\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=\frac{-4.10x.\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}=\frac{-40x\left(2y+x\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{10x\left(2y-x\right)\left(2y+x\right)}\)
c ) MTC : \(\left(x+2\right)^3\)
\(\frac{6x^2}{x^3+6x^2+12x+8}=\frac{6x^2}{\left(x+2\right)^3}\)
\(\frac{3x}{x^2+4x+4}=\frac{3x}{\left(x+2\right)^2}=\frac{3x\left(x+2\right)}{\left(x+2\right)^3}\)
\(\frac{2}{2x+4}=\frac{1}{x+2}=\frac{\left(x+2\right)^2}{\left(x+2\right)^3}\)
a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)
=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)
= \(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)
=\(\frac{2x+3}{x-2}\)
b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)
= \(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)
=\(\frac{\left|x-4\right|}{x^2-x-432}\)
từ vế trái ta có
\(\frac{x.x\left(x+3\right)}{x.\left(x+3\right)\left(x+3\right)}\)
Rút gọn đi x và (x+3) còn
\(\frac{x}{x+3}\)
từ đó suy ra cái bên trên đó .
Xét VT, ta có: \(\frac{x^2\left(x+3\right)}{x\left(x+3\right)^2}=\frac{x}{x+3}\)= VP
Vậy ...
a) MTC: 2xy
Quy đồng: \(\frac{2x-3y}{2xy}\) giữ nguyên
\(\frac{x+2y}{x}=\frac{2y\left(x+2y\right)}{2xy}=\frac{2xy+y^2}{2xy}\)
b) \(\frac{2}{x^2-4x}=\frac{2}{x\left(x-4\right)};\frac{x}{x^2-16}=\frac{x}{\left(x-4\right)\left(x+4\right)}\)
MTC: x (x-4)(x+4)
Quy đồng : \(\frac{2}{x\left(x-4\right)}=\frac{2\left(x+4\right)}{x\left(x-4\right)\left(x+4\right)}=\frac{2x+8}{x\left(x-4\right)\left(x+4\right)}\)
\(\frac{x}{\left(x+4\right)\left(x-4\right)}=\frac{x^2}{x\left(x-4\right)\left(x+4\right)}\)
Học tốt nhé ^3^
Tìm MTC: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)
Nên \(MTC=\left(x-1\right)\left(x^2+x+1\right)\)
Nhân tử phụ:
\(\left(x^3-1\right)\div\left(x^3-1\right)=1\)
\(\left(x-1\right)\left(x^2+x+1\right)\div\left(x^2+x+1\right)=x-1\)
\(\left(x-1\right)\left(x^2+x+1\right)\div1=\left(x-1\right)\left(x^2+x+1\right)\)
Quy đồng:
\(\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{1-2x}{x^2+x+1}=\frac{\left(x-1\right)\left(1-2x\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(-2=\frac{-2\left(x^3-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
MTC : \(y^3-z^2y\)
\(\frac{x}{y^2-yz}=\frac{x}{y\left(y-z\right)}=\frac{x\left(y+z\right)}{y\left(y-z\right)\left(y+z\right)}=\frac{xy+xz}{y^3-z^2y}\)
\(\frac{z}{y^2+yz}=\frac{z}{y\left(y+z\right)}=\frac{z\left(y-z\right)}{y\left(y+z\right)\left(y-z\right)}=\frac{yz-z^2}{y^3-z^2y}\)
\(\frac{y}{y^2-z^2}=\frac{y}{\left(y-z\right)\left(y+z\right)}=\frac{y^2}{y^3-z^2y}\)
pika Pikachu là con dao bạn nhé
Sao k ai giúp Mk vậy. Đinh Đức Hùng giúp nha