Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)
=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)
= \(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)
=\(\frac{2x+3}{x-2}\)
b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)
= \(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)
=\(\frac{\left|x-4\right|}{x^2-x-432}\)
Ta có:
\(5\left(x^3-9x\right)=5x^3-45x.\)(1)
\(\left(15-5x\right).\left(-x^2-3x\right)=-15x^2-45x+5x^3+15x^2=5x^3-45x\)(2)
Từ (1)(2) suy ra \(5\left(x^3-9x\right)=\left(15-5x\right)\left(-x-3x\right)\)
\(\Rightarrow\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\)(Điều phải chứng minh)
a. \(x^2y^3.35xy=5.7x^3y^4\)
\(\Leftrightarrow35x^3y^4=35x^3y^4\Rightarrowđpcm\)
\(b.x^2\left(x+2\right).\left(x+2\right)=x\left(x+2\right)^2.x\)
\(\Leftrightarrow x^2\left(x+2\right)^2=x^2\left(x+2\right)^2\Rightarrowđpcm\)
\(c.\left(3-x\right)\left(9-x^2\right)=\left(3+x\right)\left(x^2-6x+9\right)\)
\(\Leftrightarrow\left(3-x\right)\left(3-x\right)\left(3+x\right)=\left(3+x\right)\left(3-x\right)^2\)
\(\Leftrightarrow\left(3-x\right)^2\left(3+x\right)=\left(3-x\right)^2\left(3+x\right)\)
\(\Rightarrowđpcm\)
\(d.5\left(x^3-4x\right)=\left(10-5x\right)\left(-x^2-2x\right)\)
\(\Leftrightarrow5x^3-20x=5x^3-20x\Rightarrowđpcm\)
Ta có: 2(x - 8)^3 = 2x^3 - 48x^2 + 384x - 1024
2(8 - x)(8 - x)^2 = 2x^3 - 48x^2 + 384x - 1024
=> \(\frac{\left(x-8\right)^3}{2\left(8-x\right)}=\frac{\left(8-x\right)^2}{2}\) (đúng) =))
a) Ta có : (x - 5)2 - 16
= (x - 5)2 - 42
= (x - 5 - 4)(x - 5 + 4)
= (x - 1)(x - 9)
b) 25 - (3 - x)2
= 52 - (3 - x)2
= (5 - 3 + x)(5 + 3 - x)
= (x + 2)(8 - x)
c) (7x - 4)2 - (2x + 1)2
= (7x - 4 - 2x - 1)(7x - 4 + 2x + 1)
= (5x - 5)(9x - 3)
= 5(x - 1)3(3x - 1)
= 15(x - 1)(3x - 1)
Mạnh dạn đưa pt 1 ẩn về 2 ẩn :)
Đặt \(\frac{x+3}{x-2}=u;\frac{x-3}{x+2}=v\)
Ta có:
\(u^2+6v=7uv\)
\(\Leftrightarrow\left(u-v\right)\left(u-6v\right)=0\)
Xét nốt nha!
Câu b là phân tích các kiểu ra dạng như thế này nhé !
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Hoặc là bạn dựa vào đó mà phân tích đến cái A là Ok
từ vế trái ta có
\(\frac{x.x\left(x+3\right)}{x.\left(x+3\right)\left(x+3\right)}\)
Rút gọn đi x và (x+3) còn
\(\frac{x}{x+3}\)
từ đó suy ra cái bên trên đó .
Xét VT, ta có: \(\frac{x^2\left(x+3\right)}{x\left(x+3\right)^2}=\frac{x}{x+3}\)= VP
Vậy ...