\(x^3+ax+b\) chia cho x+1 thì dư 7 , chia cho x-3 thì dư (...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Cho f(x)=x3+ax+b

+) f(x) chia x+1 dư 7

=> f(-1)=-1-a+b=7 => b-a=8 (1)

+) f(x) chia x-3 dư -5

=> f(3)=27+3a+b=-5 => 3a+b=-32 (2)

Từ (1) suy ra a=b-8

Thay vào (2) ta có:

3a+b=-32

=> 3(b-8)+b=-32

<=> 3b-24+b=-32

<=> 4b=-8

<=> b= -2

=> a=b-8= -2-8=-10

Vậy a=-10; b=-2

11 tháng 2 2018

Gọi thương của phép chia  \(x^3+ax+b\)   cho  \(x+1\)là   \(A\left(x\right)\);   cho  \(x-2\)là     \(B\left(x\right)\)

Ta có:    \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)

             \(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)

Theo định lý  Bơ-du ta có:

          \(f\left(-1\right)=-1-a+b=7\)

        \(f\left(2\right)=8+2a+b=4\)

suy ra:   \(a=-4;\)   \(b=4\)

Vậy...

24 tháng 2 2015

2. Vì x3 +ax +b chia cho x +1 dư 7 nên theo định lý Bezout ta có : f(-1) = 7 => (-1)3 +a.1 +b = 7 => a +b =8 (1)

Tương tự : f(3) = -5 => 33 +a.3 +b = -5 => 3a +b = -32 (2)

Trừ từng vế (2) cho (1) ta đc : 2a = -40 => a = -20. Thay a =-20 vào (1) ta đc b = 28

24 tháng 2 2015

Xin lỗi mình thay nhầm f(-1). Tính lại nha -a +b =8 (1) ; 3a +b =-32 (2)

Vậy 4a =  -40 => a = -10 ; b = -2

13 tháng 6 2017

đặt f(x) = x3 + ax + b.

f(x) chia cho x + 1 dư 7 nên f(-1) = 7 hay -a + b - 1 = 7.

f(x) chia x - 3 dư -5 nên f(3) = -5 hay 3a + b + 27 = -5.

giải hệ trên tìm được a và b.
 

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c

17 tháng 8 2020

a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)

Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :

\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)

\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)

Lần lượt thay \(x=2,x=-1\) vào (*) ta có :

\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)

b) Đặt \(B\left(x\right)=x^3+ax+b\)

Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)

Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)

Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)

Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)

c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)

Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)

Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)

\(\Leftrightarrow-8a+4b+c=0\) (3)

Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :

\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)

Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)

Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)

Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)

23 tháng 3 2016

Đặt phép chia ra bạn nhé [như kiểu chia STN ấy]

Rùi đến cuối bạn đặt dư tùy theo đa thức chia là x+1 hay x-3