\(P=x^2+2y^2+2xy-6x-8y+2028?\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2018

\(P=x^2+2y+2xy-6x-8y-2028\\ =x^2+y^2+y^2+2xy-6x-8y+2028\\ =\left(x^2+2xy+y^2\right)+y^2-6x-8y+2028\\ =\left(x+y\right)^2+y^2-6x-6y-2y+2028\\ =x+y^2+\left(-6-6y\right)+y^2-2y+1+2027\\ =\left(x+y\right)^2-6\left(x+y\right)+\left(y-1\right)^2+2027\\ =\left(x+y\right)^2-2\left(x+y\right)^3+9+\left(y-1\right)^2+2018\)

\(=\left[\left(x+y\right)^2-2\left(x+y\right)-3+9\right]+9+\left(y-1\right)^2+2018\\ =\left(x+y-3\right)^2+\left(y-1\right)^2+2018\\ \forall x,y\left(x-y-3\right)^2\ge0;\left(y-1\right)^2\ge0\\ =>D=\left(x+y-3\right)^2+\left(y-1\right)^2+2018\ge2018\)

Vậy giá trị nhỏ nhất của P=2018

Xấu ''='' xảy ra khi: \(\left\{{}\begin{matrix}\left(x+y-3\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+1-3=0\\y=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

P = x2 + 2y2 + 2xy – 6x – 8y + 2028

P = (x2 + y2 + 2xy) – 6(x + y) + 9 + y2 – 2y + 1 + 2018

P = (x + y – 3)2 + (y – 1)2 + 2018 \(\ge\) 2018

=> Giá trị nhỏ nhất của P = 2018 khi x = 2; y = 1

23 tháng 5 2019

P=x2+2y2+2xy-6x-8y+2028

=x2+2xy+y2+y2-8y+x2-6x-x2+2028

=(x2+2xy+y2)+(y2-8y+16)+(x2-6x+9)-x2+2028-16-9

=(x-y)2+(y-4)2+(x-3)2-x2+2003\(\ge2003\)

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y-4\right)^2\ge0\\\left(x-3\right)^2\ge0\\x^2\ge0\end{matrix}\right.\) nên:

Để P=2003 thì :

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-3=0\\y-4=0\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=4\\x=0\end{matrix}\right.\)

Vậy min P=2003\(\Leftrightarrow\left(x=y\right)\in\left\{0;4;3\right\}\)

a,   B=x2+4xy+y2+x2-8x+16+2012

       B=(x+y) 2+(x-4)2+2012

 Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)

b làm tương tự 

c,  9x2+6x+1+y2-4y+4+x2-4xz+4z2=0

     (3x+1)2+(y-4)2+(x-2z)2=0

    Vậy 3x+1=0 => x = -1/3

           y-4=0 => y=4

             x-2z=0  thế x=-1/3 ta được.      -1/3-2z=0 => z = -1/6

Bạn nhớ ghi lại đề minh không ghi đề 

           

a) \(B=2x^2+y^2+2xy-8x+2028\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)

b)\(C=x^2+5y^2+4xy+2x+2y-7\)

\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)

\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)

\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)

\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)

15 tháng 5 2018

Giải:

\(P=x^2+2y^2+2xy-6x-8y+2018\)

\(\Leftrightarrow P=\left(x^2+y^2+9+2xy-6x-6x\right)+\left(y^2-2y+1\right)+2008\)

\(\Leftrightarrow P=\left(x+y-3\right)^2+\left(y-1\right)^2+2008\)

\(\left\{{}\begin{matrix}\left(x+y-3\right)^2\ge0;\forall x,y\\\left(y-1\right)^2\ge0;\forall y\end{matrix}\right.\)

\(\Leftrightarrow\left(x+y-3\right)^2+\left(y-1\right)^2+2008\ge2008;\forall x,y\)

Hay \(P\ge2008;\forall x,y\)

Vậy ...

15 tháng 5 2018

\(P=x^2+2y^2+2xy-6x-8y+2018\)

<=> \(P=\left(x^2+2xy+y^2\right)-\left(6x+6y\right)+9+\left(y^2-2y+1\right)+2008\)

<=> P=(x+y)2-6(x+y) +9 +(y-1)2 +2008

<=> P=(x+y-3)2+(y-1)2+2008

=> Min P= 2008 dấu = xảy ra khi y=1;x=2

Có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2-a+\frac{1}{4}\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)

Tương tự cũng có : \(b^2+\frac{1}{4}\ge b ; c^2+\frac{1}{4}\ge c\)

Cộng vế với vế các bất đẳng thức cùng chiều ta đươc:

\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)( Vì a + b + c = \(\frac{3}{2}\) nên \(a^2+b^2+c^2\ge\frac{3}{4}\))

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2023

Lời giải:

$P=(x^2+y^2+2xy)+y^2-6x-8y+2028$

$=(x+y)^2-6(x+y)+(y^2-2y)+2028$
$=(x+y)^2-6(x+y)+9+(y^2-2y+1)+2018$

$=(x+y-3)^2+(y-1)^2+2018\geq 0+0+2018=2018$

Vậy $P_{\min}=2018$

Giá trị này đạt tại $x+y-3=y-1=0$

$\Leftrightarrow y=1; x=2$

Y
11 tháng 4 2019

\(P=x^2+\left(2xy-6x\right)+2y^2-8y+2029\)

\(P=x^2+2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+2y^2-8y+2029\)

\(P=\left(x+y-3\right)^2-\left(y^2-6y+9\right)+2y^2-8y+2029\)

\(P=\left(x+y-3\right)^2+y^2-2y+1+2019\)

\(P=\left(x+y-3\right)^2+\left(y-1\right)^2+2019\) \(\ge2019\forall x,y\)

\(P=2019\Leftrightarrow\left\{{}\begin{matrix}x+y-3=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Vậy Min P = 2019 \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Y
11 tháng 4 2019

1.\(\Leftrightarrow a^2+b^2-ab-a-b+3>0\)

\(\Leftrightarrow2a^2+2b^2-2ab-2a-2b+6>0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+4>0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+4>0\) ( luôn đúng )

Do đó suy ra đpcm

15 tháng 2 2020

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)

\(\Leftrightarrow\left(x+y+3\right)^2=1-y^2\)

Ta thấy : \(1-y^2\le1\forall y\) \(\Rightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow-1\le x+y+3\le1\)

\(\Rightarrow-1+2013\le x+y+3+2013\le1+2013\)

\(\Rightarrow2012\le x+y+2016\le2014\)

Vậy ta có : 

+) Min \(B=2012\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-4\end{cases}}\)

+) Max \(M=2014\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=-2\end{cases}}\)