K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2018

a)\(A=\frac{1}{x-3}\)

Để A nhỏ nhất => x-3 =-1 <=> x = 2 

=> A nhỏ nhất là -1

b)\(B=7-\frac{x}{x-5}=6-\frac{5}{x-5}\)

tương tự x=6 và B nhỏ nhất là 1

c) \(C=\frac{5x-19}{x-4}=5+\frac{1}{x-4}\) 

tương tự x=3 và B nhỏ nhất là 4

19 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)

Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3x+2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

Chúc bạn học tốt ~ 

19 tháng 4 2018

\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau : 

\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)

Áp dụng vào ta có : 

\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A=8\) khi \(0\le x\le8\)

Chúc bạn học tốt ~ 

2 tháng 10 2016

a)

  • Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|x-4\right|\ge\left|x-1+4-x\right|=3\)

\(\Rightarrow B\ge3\)

Dấu = khi \(\left(x-1\right)\left(x-4\right)\ge0\)\(\Rightarrow1\le x\le4\)

Vậy MinB=3 khi \(1\le x\le4\)

  • Áp dụng tiếp Bđt kia ta có:

\(\left|1993-x\right|+\left|1994-x\right|\ge\left|1993-x+x-1994\right|=1\)

\(\Rightarrow C\ge1\)

Dấu = khi \(\left(x-1993\right)\left(x-1994\right)\ge0\)\(\Rightarrow1993\le x\le1994\)

Vậy MinC=1 khi \(1993\le x\le1994\)

  • Ta thấy: \(\begin{cases}x^2\\\left|y-2\right|\end{cases}\ge0\)

\(\Rightarrow x^2+\left|y-2\right|\ge0\)

\(\Rightarrow x^2+\left|y-2\right|-5\ge-5\)

\(\Rightarrow D\ge-5\)

Dấu = khi \(\begin{cases}x=0\\y=2\end{cases}\)

Vậy MinD=-5 khi \(\begin{cases}x=0\\y=2\end{cases}\)

b)Ta thấy:

\(\begin{cases}\left|4x-3\right|\\\left| 5y+7,5\right|\end{cases}\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow C\ge17,5\)

Dấu = khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

Vậy MinC=17,5 khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

c)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2002\right|+\left|x-2001\right|\ge\left|x-2002+2001-x\right|=1\)

\(\Rightarrow M\ge1\)

Dấu = khi \(\left(x-2002\right)\left(x-2001\right)\ge0\)\(\Rightarrow2001\le x\le2002\)

Vậy MinM=1 khi \(2001\le x\le2002\)

3 tháng 10 2016

Thankshaha

5 tháng 7 2016

A=x2-2x+5=x2-2x+1+4=(x-1)2+4

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Amin <=> \(\left(x-1\right)^2+4=4\)

<=>(x-1)2=0

<=>x-1=0

<=>x=1

Vậy Amin=4 khi x=1

20 tháng 7 2021

bạn ơi. Bạn có đáp án của bài này chưa vậy. Cho mik xin vs

mik đang cần gấp

 

24 tháng 2 2018

Ta có : 

\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)

Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\)  và có GTNN

\(\Rightarrow\)\(x=1\)

\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)

Vậy \(M_{min}=-3\) khi \(x=1\)