\(a,lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

a. ĐKXĐ: \(n\ge0\)

\(lim_{n\rightarrow0}\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=\dfrac{\sqrt{2.0+1}}{\sqrt{8.0}+1}=1\)

\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=lim_{n\rightarrow+\infty}\dfrac{\sqrt{2+\dfrac{1}{n}}}{\sqrt{8}+\dfrac{1}{\sqrt{n}}}=\dfrac{1}{2}\)

b. ĐKXĐ: \(\left\{{}\begin{matrix}n\ne0\\n\le\dfrac{-1-\sqrt{21}}{2}\\n\ge\dfrac{-1+\sqrt{21}}{2}\end{matrix}\right.\)

\(lim_{n\rightarrow+\infty}\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\)\(lim_{n\rightarrow+\infty}\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=-2\)

\(lim_{n\rightarrow-\infty}\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\)\(lim_{n\rightarrow-\infty}\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=-1\)

9 tháng 4 2017

a) lim = lim = = 2.

b) lim = lim = .

c) lim = lim = 5.

d) lim = lim == .


 

NV
1 tháng 1 2019

\(lim\dfrac{5n\sqrt{2n^2-n}}{1+5n-3n^2}=lim\dfrac{5\sqrt{2-\dfrac{1}{n}}}{\dfrac{1}{n^2}+\dfrac{5}{n}-3}=\dfrac{5\sqrt{2-0}}{0+0-3}=\dfrac{-5\sqrt{2}}{3}\)

\(lim\dfrac{\sqrt{4n^2+n}-7n}{3n^2-1}=lim\dfrac{\sqrt{\dfrac{4}{n^2}+\dfrac{1}{n^3}}-\dfrac{7}{n}}{3-\dfrac{1}{n^2}}=\dfrac{\sqrt{0+0}-0}{3-0}=\dfrac{0}{3}=0\)

3 tháng 3 2018

x tiến tới đâu zậy bạn?

10 tháng 12 2019

\(\lim\limits\left(\sqrt{2n^2+3}-\sqrt{n^2+1}\right)=\lim\limits\frac{n^2-2}{\left(\sqrt{2n^2+3}+\sqrt{n^2+1}\right)}=\lim\limits\frac{n-\frac{2}{n}}{\sqrt{2+\frac{3}{n^2}}+\sqrt{1+\frac{1}{n^2}}}=+\infty\)

\(\lim\limits\frac{1}{\sqrt{n+1}-\sqrt{n}}=\lim\limits\left(\sqrt{n+1}+\sqrt{n}\right)=+\infty\)

24 tháng 4 2020

a) lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)

= lim \(\frac{\left(2-\frac{3}{n}+\frac{5}{n^2}\right)\left(2+\frac{1}{n}\right)}{\left(\frac{4}{n}-3\right)\left(2+\frac{1}{n}+\frac{1}{n^2}\right)}=\frac{4}{-6}=-\frac{2}{3}\)

b)lim ( \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\))

= lim ( \(\frac{n\sqrt{n^4+1}-\sqrt{4n^6+2}}{n^2}\) )

= lim \(\frac{\left(n^6+n^2\right)-\left(4n^6+2\right)}{n^2\left(n\sqrt{n^4+1}+\sqrt{4n^2+2}\right)}\)

= lim \(\frac{-3n^6+n^2+2}{n^3\sqrt{n^4+1}+n^2\sqrt{4n^2+2}}\)

= lim \(\frac{-3n\left(1-\frac{1}{n^4}-\frac{2}{n^6}\right)}{\sqrt{1+\frac{1}{n^4}}+\frac{1}{n^2}\sqrt{4+\frac{2}{n^2}}}\)

= lim \(-3n=-\infty\)

c) lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)

= lim\(\frac{2+\frac{3}{n}}{\sqrt{9+\frac{3}{n^2}}-\sqrt[3]{\frac{2}{n}-8}}=\frac{2}{3+2}=\frac{2}{5}\)

18 tháng 2 2022

a, \(lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=lim\dfrac{\sqrt{n}.\sqrt{2+\dfrac{1}{n}}}{\sqrt{n}\left(\sqrt{8}+\dfrac{1}{n}\right)}=\dfrac{\sqrt{2}}{\sqrt{8}}=\dfrac{1}{2}\)

18 tháng 2 2022

b, \(lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}\)

\(=lim\left(\dfrac{3}{2}-\dfrac{\sqrt{n^2+n-5}}{2n}\right)\)

\(=lim\left(\dfrac{3}{2}-\dfrac{n\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{2n}\right)=\dfrac{3}{2}-\dfrac{1}{2}=1\)

NV
15 tháng 2 2022

\(\lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=\lim\dfrac{\sqrt{n}.\sqrt{2+\dfrac{1}{n}}}{\sqrt{n}\left(\sqrt{8}+\dfrac{1}{\sqrt{n}}\right)}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{\sqrt{8}+\dfrac{1}{\sqrt{n}}}=\dfrac{\sqrt{2}}{\sqrt{8}}=\dfrac{1}{2}\)

\(\lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\lim\dfrac{n\left(3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}\right)}{-2n}=\lim\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=\dfrac{3+1}{-2}=-2\)