Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(x\ne3\) để mẫu khác 0
Vì 2 phân số có cùng mẫu nên
\(\left|x-5\right|=\left|x-1\right|\)
*TH1: \(\begin{cases}x-5\ge0\\x-1\ge0\end{cases}\)
\(x-5=x-1\)
\(0x=4\)
KHông có giá trị x
*TH2:
\(\begin{cases}x-5\le0\\x-1\le0\end{cases}\)
\(-\left(x-5\right)=-\left(x-1\right)\)
\(\Rightarrow-x-5=-x+1\)
\(0x=-4\)
Không có giá trị x
*TH3:
\(\begin{cases}x-1\ge0\\x-5\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1\\x\le5\end{cases}\)
\(-\left(x-5\right)=x-1\)
\(\Rightarrow5+1=2x\)
\(\frac{6}{2}=x\)
\(x=3\)
Mà \(x\ne3\)
nên ko có giá trị thỏa mãn
vậy không có giá trị x nguyên thỏa mãn với đề bài
Xét tử \(\left|4-x\right|+\left|x+2\right|\ge0\)
Xét mẫu \(\left|x+5\right|+\left|x-3\right|\ge0\)
Do đó \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}\ge0\)
Nhưng đề bài cho \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}<0\) nên không có giá trị nào của x thỏa mãn.
|x-2|.y+|x-2|-17=0
<=>|x-2|.y+|x-2|=17
<=>|x-2|.(y+1)=17=1.17=17.1=(-1).(-17)=(-17).(-1)
Ta có: |x-2| và y+1 là ước của 17
Chú ý rằng |x-2| >= 0 với mọi x nên |x-2| là ước dương của 17,từ đó suy ra y+1 cũng là ước dương của 17
=>|x-2|.(y+1)=1.17=17.1
+)|x-2|=1 và y+1=17
=>x-2=-1 hoặc x-2=1 và y+1=17
=>x=1 hoặc x=3 và y=16
+)|x-2|=17 và y+1=1
=>x-2=-17 hoặc x-2=17 và y+1=1
=>x=-15 hoặc x=19 và y=0
Vậy ..........................
a/ f(x) = 0 => x2 + 4x - 5 = 0 => (x - 1)(x + 5) = 0 => x = 1 hoặc x = -5
Vậy x = 1 , x = -5
b/ f(x) > 0 => x2 + 4x - 5 > 0 => (x - 1)(x + 5) > 0 => x - 1 > 0 và x + 5 > 0 => x > 1 và x > -5 => x > 1
hoặc x - 1 < 0 và x + 5 < 0 => x < 1 và x < -5 => x < -5
Vậy x > 1 hoặc x < -5
c/ f(x) < 0 => x2 + 4x - 5 < 0 => (x - 1)(x + 5) < 0 => x - 1 > 0 và x + 5 < 0 => x > 1 và x < -5 => vô lí
hoặc x - 1 < 0 và x + 5 > 0 => x < 1 và x > -5 => -5 < x < 1
Vậy -5 < x < 1
ta có \(\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|\ge\left|\left(x-a\right)+\left(x-b\right)+\left(c-x\right)+\left(d-x\right)\right|=\left|c+d-a-b\right|=c+d-a-b\)( do a<b<c<d => c-a>0 và d-b>0)
vậy Min A= c+d-a-b
Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất
nên /3-x/=0(vì /3-x/ luôn >=0 dấu)
3-x=0
x=3
D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)
nên \x-2\+2=2
\x-2\=0
x-2=0
x=2
a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)
\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(A=\frac{x+1}{x+\sqrt{x}+1}\)
Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)
\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)
\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)
\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)
b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)
Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)
Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)
Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).
Ta có \(A=\left|x-2013\right|+\left|x-1989\right|\)
hay \(A=\left|2013-x\right|+\left|x-1989\right|\ge\left|2013-x+x-1989\right|\)
suy ra \(24\le A\le24\)
\(\Rightarrow A=24\)
vì x-2013<x-1989
Do đó ta xét các trường hợp
TH1 \(\begin{cases}x-2013\ge0\\x-1989\ge0\end{cases}\) \(\Rightarrow\begin{cases}x\ge2013\\x\ge1989\end{cases}\)
khi đó \(x-2013+x-1989=24\)
=> x=2013 (thỏa mãn)
TH2: \(\begin{cases}x-2013\le0\\x-1989\le0\end{cases}\) \(\Rightarrow\begin{cases}x\le2013\\x\le1989\end{cases}\)
khi đó: \(-\left(x-2013\right)-\left(x-1989\right)=24\)
=>x=1989 (thỏa mãn)
*TH3 \(\begin{cases}x-1989\ge0\\x-2013\le0\end{cases}\) \(\Rightarrow\begin{cases}x\ge1989\\x\le2013\end{cases}\)
\(\Rightarrow1989\le x\le2013\)
\(-\left(x-2013\right)+x-1989=24\)
\(0x+2013-1989=24\)
\(0x=0\)
có vô số giá trị \(x\in Z\)
Mà \(1989\le x\le2013\)
\(\Rightarrow x\in\left\{1989;1990;...;2013\right\}\)
Vậy có 25 giá trị x
cho hỏi bạn làm cách nào mà:
-(x-2013)-(x-1989)=24
=>x=1989 được vậy?