K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2021

Tìm các giá trị nguyên của biến để các phân thức sau có giá trị nguyên \(\frac{2x}{x+1}\)

\(DK:x\ne-1\)

\(\frac{2x}{x+1}=\frac{2\left(x+1\right)-2}{x+1}=2-\frac{2}{x+1}\)

Để phân thức có giá trị nguyên \(\Leftrightarrow\frac{2}{x+1}\inℤ\)

\(\Leftrightarrow2⋮x+1\Leftrightarrow x+1\in\text{Ư}\left(2\right)=\left\{\pm1;\pm2\right\}\Leftrightarrow x\in\left\{-3;-2;0;1\right\}\) \(\left(tm\right)\)

28 tháng 8 2021

x nguyên,x khác -1

x nguyên,x khác 3

tik mik nha

 

28 tháng 8 2021

làm cụ thể giúp mình đc không ạ

 

28 tháng 8 2021

\(\dfrac{2x}{x+1}\in Z\Rightarrow2x⋮x+1\Rightarrow2x+2-2⋮x+1\Rightarrow2\left(x+1\right)-2⋮x+1\)

Mà \(2\left(x+1\right)⋮x+1\Rightarrow-2⋮x+1\Rightarrow x+1\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\Rightarrow x=\left\{-3;-2;0;1\right\}\)

6 tháng 8 2017

\(A=\frac{2\left(x+1\right)}{x^3+1}=\frac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{x^2-x+1}\)

Để A nhận GT nguyên \(\Leftrightarrow x^2-x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\) nên

\(\orbr{\begin{cases}x^2-x+1=0\\x^2-x+1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)x=0\\x-\frac{1}{2}=+-\sqrt{\frac{5}{4}}\left(l\right)\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy \(x=\left\{0;1\right\}\)

23 tháng 7 2021

Dễ

Để phân số là số nguyên thì \(3x^3-4x^2+x-1⋮x-4\)

\(\Leftrightarrow3x^3-12x^2+8x^2-32x+33x-132+131⋮x-4\)

\(\Leftrightarrow x-4\inƯ\left(131\right)\)

\(\Leftrightarrow x-4\in\left\{1;-1;131;-131\right\}\)

hay \(x\in\left\{5;3;135;-127\right\}\)

6 tháng 8 2017

tôi ko biết đâu

6 tháng 8 2017

Lớp 8 thì mk ko bt, mk ms lớp 6 thôi

20 tháng 12 2020

ĐKXĐ: \(x\ne1\)

Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)

\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)

\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)

\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)

\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)

Để B nguyên thì \(3⋮\left(x-1\right)^2\)

\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)

\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)

mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ

nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)

\(\Leftrightarrow x-1\in\left\{1;9\right\}\)

hay \(x\in\left\{2;10\right\}\) (nhận)

Vậy: \(x\in\left\{2;10\right\}\)

30 tháng 8 2021

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\left(đk:x\ne-\dfrac{1}{2}\right)=\dfrac{\left(2x+1\right)\left(x^2+1\right)}{2x+1}+\dfrac{1}{2x+1}=x^2+1+\dfrac{1}{2x+1}\)

Do x nguyên nên để biểu thức trên có giá trị nguyên thì :

\(1⋮2x+1\Rightarrow2x+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow x\in\left\{0;-1\right\}\)

\(\dfrac{2x^3+x^2+2x+2}{2x+1}\)

\(=\dfrac{2x^3+x^2+2x+1+1}{2x+1}\)

\(=x^2+1+\dfrac{1}{2x+1}\)

Để đó là số nguyên thì \(1⋮2x+1\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)