Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) x≠2x≠2
Bài 2:
a) x≠0;x≠5x≠0;x≠5
b) x2−10x+25x2−5x=(x−5)2x(x−5)=x−5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x
c) Để phân thức có giá trị nguyên thì x−5xx−5x phải có giá trị nguyên.
=> x=−5x=−5
Bài 3:
a) (x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)
=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5
=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5
=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5
=[(x+1)2+6−(x2+2x−3)]⋅25=[(x+1)2+6−(x2+2x−3)]⋅25
=[(x+1)2+6−x2−2x+3]⋅25=[(x+1)2+6−x2−2x+3]⋅25
=[(x+1)2+9−x2−2x]⋅25=[(x+1)2+9−x2−2x]⋅25
=2(x+1)25+185−25x2−45x=2(x+1)25+185−25x2−45x
=2(x2+2x+1)5+185−25x2−45x=2(x2+2x+1)5+185−25x2−45x
=2x2+4x+25+185−25x2−45x=2x2+4x+25+185−25x2−45x
=2x2+4x+2+185−25x2−45x=2x2+4x+2+185−25x2−45x
=2x2+4x+205−25x2−45x=2x2+4x+205−25x2−45x
c) tự làm, đkxđ: x≠1;x≠−1
\(A=\frac{2\left(x+1\right)}{x^3+1}=\frac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{x^2-x+1}\)
Để A nhận GT nguyên \(\Leftrightarrow x^2-x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\) nên
\(\orbr{\begin{cases}x^2-x+1=0\\x^2-x+1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)x=0\\x-\frac{1}{2}=+-\sqrt{\frac{5}{4}}\left(l\right)\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy \(x=\left\{0;1\right\}\)
để x có giá trị nguyên thì 6/(x-3) phải có giá trị nguyên
=> 6 chia hết cho (x-3)
=> (x-3) thuộc ước của 6
ta có bảng sau
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
vậy x thuộc các kết quả trên thì biểu thức mang giá trị nguyên
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
Tìm các giá trị nguyên của biến để các phân thức sau có giá trị nguyên \(\frac{2x}{x+1}\)
\(DK:x\ne-1\)
\(\frac{2x}{x+1}=\frac{2\left(x+1\right)-2}{x+1}=2-\frac{2}{x+1}\)
Để phân thức có giá trị nguyên \(\Leftrightarrow\frac{2}{x+1}\inℤ\)
\(\Leftrightarrow2⋮x+1\Leftrightarrow x+1\in\text{Ư}\left(2\right)=\left\{\pm1;\pm2\right\}\Leftrightarrow x\in\left\{-3;-2;0;1\right\}\) \(\left(tm\right)\)