Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thử các TH nhé ;
TH1 : x-1 âm và x-2 dương
TH2 : x-1 dương và x-2 âm
Để A có giá trị là số âm:
\(\Rightarrow\orbr{\begin{cases}x-1>0;x-2< 0\\x-1< 0;x-2>0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>1;x< 2\\x< 1;x>2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}1< x< 2\\2< x< 1\left(loai\right)\end{cases}}\)
Vậy 1<x<2
Để B là số âm
\(\Rightarrow B< 0\)
\(\Rightarrow\frac{x^2-2}{3x}< 0\)
\(TH1:3x>0\Leftrightarrow x>0\)
\(\Rightarrow x^2-2< 0\)
\(\Rightarrow x^2< 2\)
\(\Rightarrow x< \sqrt{2}\)(LOẠI)
\(TH2:3x< 0\Leftrightarrow x< 0\)
\(\Rightarrow x^2-2>0\)
\(\Rightarrow x^2>2\)
\(\Rightarrow x>\sqrt{2}\)(LOẠI)
Vậy không có giá trị x thỏa mãn đề bài
Ta có:B=x^2-2/3.x
=x.x-2/3.x
=x.(x-2/3)
Để B âm thì hai thừa số của B phải tría dấu hay có 1 số âm và một số dương.Mà x>x-2/3
Suy ra x>0 và x-2/3<0 hay x>0 và x<2/3
Suy ra2/3<x<0;suy ra 2/3<0(Vô lý)
Vậy không tồn tại x thỏa mãn đề bài
Ta có: \(|x-9|\ge0\forall x\)
\(\Rightarrow|x-9|+10\ge0+10\forall x\)
Hay \(A\ge10\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow x-9=0\)
\(\Leftrightarrow x=9\)
Vậy Min A =10 \(\Leftrightarrow x=9\)
Để A nhỏ nhất => /x-9/nhỏ nhất => /x-9/ = 0 => x - 9 =0 => x = 9
A) Ta có S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> 3S = 999900
=> S = 333300
b) Để A đạt giá trị nhỏ nhất
=> (x - 1)2 nhỏ nhất
mà \(\left(x-1\right)^2\ge0\forall x\)
=> (x - 1)2 = 0 là giá trị nhỏ nhất của (x - 1)2
=> x - 1 = 0
=> x = 1
Vậy khi x = 1 thì A đạt giá trị nhỏ nhất
Để |x + 4| + 1996 đạt giá trị nhỏ nhất
=> |x + 4| nhỏ nhất
mà \(\left|x+4\right|\ge0\forall x\)
=> Giá trị nhỏ nhất của |x + 4| khi |x + 4| = 0
=> x + 4 = 0
=. x = -4
Vậy khi x = -4 thì B đạt GTNN