Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét pt :
\(x^2-2\left(m-1\right)+2m-5=0\)
\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)
\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m
b/ Phương trình cớ 2 nghiệm trái dấu
\(\Leftrightarrow2m-5< 0\)
\(\Leftrightarrow m< \dfrac{5}{2}\)
c/ Theo định lí Vi - et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)
\(A=x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1.x_2\)
\(=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-8m+4-4m+10\)
\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)
\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)
1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)
Vậy pt luôn có 2 nghiệm pb với mọi m
2, Vì pt có 2 nghiệm trái dấu
\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)
3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)
\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)
\(=\left(2m-3\right)^2+6\ge6\forall m\)
Dấu ''='' xảy ra khi m = 3/2
Vậy với m = 3/2 thì A đạt GTNN tại 6
1: Δ=(2m-2)^2-4(2m-5)
=4m^2-8m+4-8m+20
=4m^2-16m+24
=4m^2-16m+16+8
=(2m-4)^2+8>=8>0 với mọi m
=>PT luôn có 2 nghiệm pb
2: Để pt có hai nghiệm trái dấu thì 2m-5<0
=>m<5/2
3: A=(x1+x2)^2-2x1x2
=(2m-2)^2-2(2m-5)
=4m^2-8m+4-4m+10
=4m^2-12m+14
=4(m^2-3m+7/2)
=4(m^2-2m*3/2+9/4+5/4)
=4(m-3/2)^2+5>=5
Dấu = xảy ra khi m=3/2
`1)` Ptr có: `\Delta'=[-(m-1)]^2-2m+5`
`=m^2-4m+4+2=(m-2)^2+2 > 0 AA m`
`=>` Ptr có `2` nghiệm phân biệt `AA m`
`2)` Ptr có `2` nghiệm trái dấu `<=>ac < 0`
`<=>2m-5 < 0<=>m < 5/2`
`3) AA m` ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m-2),(x_1.x_2=c/a=2m-5):}`
Ta có: `A=x_1 ^2+x_2 ^2`
`<=>A=(x_1+x_2)^2-2x_1.x_2`
`<=>A=(2m-2)^2-2(2m-5)`
`<=>A=4m^2-8m+4-4m+10`
`<=>A=4m^2-12m+14`
`<=>A=(2m-3)^2+5 >= 5 AA m`
`=>A_[mi n]=5`
Dấu "`=`" xảy ra `<=>2m-3=0<=>m=3/2`
a: Để phương trình có hai nghiệm trái dấu thì (m-1)(m+4)(m+3)<0
=>m<-4 hoặc -3<m<1
b:Để phương trình có ít nhất 1 nghiệm thì
(m-1)(m+4)(m+3)<0 hoặc \(\left\{{}\begin{matrix}m< >-3\\\left(m-1\right)^2-4\left(m+3\right)\left(m-1\right)\left(m+4\right)< 0\\\dfrac{-m+1}{m+3}< 0;\dfrac{\left(m-1\right)\left(m+4\right)}{\left(m+3\right)}>0\end{matrix}\right.\)
=>(m<-4 hoặc -3<m<1) hoặc \(\left\{{}\begin{matrix}m< >-3\\\left(m-1\right)\left(m-1-4m^2-28m-48\right)< 0\\\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\\left[{}\begin{matrix}m>1\\-4< m< -3\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
=>(m<-4 hoặc -3<m<1) hoặc (m>1 hoặc m<-3)
a) Điều kiện để phương trình có hai nghiệm trái dấu là :
\(\left\{{}\begin{matrix}m\ne0\\\Delta phẩy>0\\x_1.x_2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+4m+4-m^2+3m>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)
\(\Rightarrow0< m< 3\)
b) Để phương trình có 2 nghiệm phân biệt thì : \(\Delta\) phẩy > 0
\(\Rightarrow m< 4\)
Ta có : \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=2\)
\(\Leftrightarrow x_1^2+x_2^2=2x_1^2.x_2^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2=2x_1^2.x_2^2\)
Theo Vi-ét ta có : \(x_1+x_2=\dfrac{-2\left(m-2\right)}{m};x_1.x_2=\dfrac{m-3}{m}\)
\(\Rightarrow\dfrac{4\left(m-2\right)^2}{m^2}-2.\dfrac{m-3}{m}=2.\dfrac{\left(m-3\right)^2}{m^2}\)
\(\Leftrightarrow m=1\left(tm\right)\)
Vậy...........
a) \(mx^2+2\left(m-2\right)x+m-3=0\left(1\right)\)
Để \(\left(1\right)\) có hai nghiệm trái dấu \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-2\right)^2-m\left(m-3\right)>0\\\dfrac{m-3}{m}< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-4m+4-m^2-3m>0\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7m+4>0\\0< m< 3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{4}{7}\\0< m< 3\end{matrix}\right.\) \(\Leftrightarrow0< m< 3\)
b) \(\dfrac{1}{x^2_1}+\dfrac{1}{x^2_2}=2\Leftrightarrow\dfrac{x^2_1+x_2^2}{x^2_1.x^2_2}=2\) \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-4x_1.x_2}{x^2_1.x^2_2}=2\)
\(\Leftrightarrow\left(\dfrac{x_1+x_2}{x_1.x_2}\right)^2-\dfrac{4}{x_1.x_2}=2\)
\(\Leftrightarrow\left(\dfrac{\dfrac{2\left(2-m\right)}{m}}{\dfrac{m-3}{m}}\right)^2-\dfrac{4}{\dfrac{m-3}{m}}=2\)
\(\Leftrightarrow\left(\dfrac{2\left(2-m\right)}{m-3}\right)^2-\dfrac{4m}{m-3}=2\)
\(\Leftrightarrow4\left(2-m\right)^2-4m\left(m-3\right)=2.\left(m-3\right)^2\)
\(\Leftrightarrow4\left(4-4m+m^2\right)-4m^2+12=2.\left(m^2-6m+9\right)\)
\(\Leftrightarrow16-16m+4m^2-4m^2+12=2m^2-12m+18\)
\(\Leftrightarrow2m^2+4m-10=0\)
\(\Leftrightarrow m^2+2m-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt[]{6}\\m=-1-\sqrt[]{6}\end{matrix}\right.\) \(\Leftrightarrow m=-1+\sqrt[]{6}\left(\Delta>0\Rightarrow m>-\dfrac{4}{7}\right)\)
\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)
a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)
⇒ Phương trình có hai nghiệm phân biệt
b, Để phương trình có hai nghiệm cùng dương thì :
\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)
c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)
Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)
Kết luận ....
\(1)\) Để m có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2-4\left(m^2+3m+2\right)>0\)
\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3m+2\right)>0\)
\(\Leftrightarrow4\left(m^2+2m+1\right)-4\left(m^2+3m+2\right)>0\)
\(\Leftrightarrow4m^2+8m+4-4m^2-12m-8>0\)
\(\Leftrightarrow-4m-4>0\)
\(\Leftrightarrow-4m>4\)
\(\Leftrightarrow m< -1\)
\(2)\) Theo Vi-ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+2\\x_1x_2=\dfrac{c}{a}=m^2+3m+2\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2=12\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-12=0\)
\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+3m+2\right)-12=0\)
\(\Leftrightarrow4m^2+8m+4-2m^2-6m-4-12=0\)
\(\Leftrightarrow2m^2+2m-12=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
m=2 thì phương trình đâu có nghiêm đâu? Phải loại đi chứ
a) Pt có hai nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow m< 0\)
b) Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow36-4m\ge0\Leftrightarrow m\le9\)
Áp dụng hệ thức viet có:
\(\left\{{}\begin{matrix}x_1+x_2=6\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
Từ (1) kết hợp với điều kiện có:\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1-2x_2=m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=6-m\\x_1+x_2=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{6-m}{3}\\x_1=6-x_2=\dfrac{12+m}{3}\end{matrix}\right.\)
\(\Rightarrow x_1x_2=\dfrac{6-m}{3}.\dfrac{12+m}{3}=m\)
\(\Leftrightarrow72-15m-m^2=0\)
\(\Delta=3\sqrt{57}\)
\(\Rightarrow m=\dfrac{-15\pm3\sqrt{57}}{2}\) (thỏa mãn)
Vậy...
a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)
Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)
Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.
nghiệm trái dấu khi a.c<0
2 nghiệm phân biệt thì đenta>0