Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
C=a2-4ab+4b2+b2-2b+1-7=(a-2b)2+(b-1)2-7 > hoặc =-7
dấu = xảy ra khi a-2b=0
b-1=0
<=>a=2;b=1
..................................
1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)
\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)
2/
Ta có
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)
\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)
\(\Rightarrow P_{min}=18\)
\(a^2+b^2+c^2+6=2\left(a+2b+c\right)\)
\(\Leftrightarrow a^2-2a+1+b^2-4b+4+c^2-2c+1=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-1\right)^2=0\).
Suy ra \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b-2\right)^2=0\\\left(c-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b-2=0\\c-1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=1\end{cases}}\).
\(a,x=2\Leftrightarrow A=3\cdot4-4\cdot2-1=12-8-1=3\\ b,B=x^3-1-2x+x^2-2+x-x^3=x^2-x-3\\ c,C=B-A=x^2-x-3-3x^2+3x+1=-2x^2-2x-2\\ C=-2\left(x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\right)=-2\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{2}\le-\dfrac{3}{2}\\ C_{max}=-\dfrac{3}{2}\Leftrightarrow x=-\dfrac{1}{2}\)
\(a^2+b^2+c^2+6=2\left(a+2b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+6-2a-4b-2c=0\)
\(\Rightarrow\left(a^2-2a+1\right)+\left(b^2-4b+4\right)+\left(c^2-2c+1\right)=0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-1\right)^2=0\) (1)
Mà \(\begin{cases}\left(a-1\right)^2\ge0\\\left(b-2\right)^2\ge0\\\left(c-1\right)^2\ge0\end{cases}\)\(\Rightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-1\right)^2\ge0\)(2)
Từ (1) và (2) suy ra \(\begin{cases}\left(a-1\right)^2=0\\\left(b-2\right)^2=0\\\left(c-1\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}a-1=0\\b-2=0\\c-1=0\end{cases}\)\(\Rightarrow\begin{cases}a=1\\b=2\\c=1\end{cases}\)