K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

oe

DD
3 tháng 6 2021

Số phải tìm có dạng \(\overline{x4y}\)\(x+y=17-4=13\).

\(\overline{x4y}-\overline{y4x}=99\Leftrightarrow99x-99y=99\Leftrightarrow x-y=1\)

Ta có hệ: 

\(\hept{\begin{cases}x+y=13\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\).

Vậy số cần tìm là \(746\).

2 tháng 8 2023

 Bài toán tương đương với tìm số tự nhiên N có 4 chữ số sao cho N và \(N+1353\) đều là các SCP có 4 chữ số. Bạn chỉ cần đặt \(\left\{{}\begin{matrix}N=n^2\\N+1353=m^2\end{matrix}\right.\), trừ theo vế thu được \(\left(m-n\right)\left(m+n\right)=1353\). Tới đây bạn chặn \(0< m-n< m+n\) kèm theo \(32\le n\le92\) và \(49\le m\le99\) rồi chia trường hợp, đối chiếu điều kiện là xong.

17 tháng 12 2017

vào chữ số hàng trăm , thêm 5 đơn vị vào chữ số hàng chục , thêm 3 đơn vị vào chữ số hàng đơn vị thì ta vẫn được một số chính phương

Toán lớp 8 Số chính phương

Trần thị Loan 15/03/2015 lúc 23:50
 Báo cáo sai phạm

Gọi số chính phương cần tìm là abcd

=> đặt abcd = n2

theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương 

=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số

ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)

                                       = (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3 

                                       = abcd + 1353                                           (*)

=> m2 = n+ 1353  => m2 - n =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123

TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn

TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn

vậy số cần tìm là 562 = 3136

31 tháng 1 2016

minh ko biết

10 tháng 2 2019

Số chính phương đó là 3136 . Hok tốt

15 tháng 3 2015

Gọi số chính phương cần tìm là abcd

=> đặt abcd = n2

theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương 

=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số

ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)

                                       = (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3 

                                       = abcd + 1353                                           (*)

=> m2 = n+ 1353  => m2 - n =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123

TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn

TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn

vậy số cần tìm là 562 = 3136

12 tháng 7 2015

Gọi số chính phương cần tìm là abcd

=> đặt abcd = n2

theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương 

=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số

ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)

                                       = (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3 

                                       = abcd + 1353                                           (*)

=> m2 = n+ 1353  => m2 - n =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123

TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn

TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn

vậy số cần tìm là 562 = 3136