Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+3y+x=2
(3+x)y+x=2
(3+x)y+(x+3)=5
(3+x)(y+1)=5
...............tự giải tiếp
\(a,\) Ta có \(y=\frac{5x+9}{x+3}\)
Để \(y\) nhận giá trị nguyên thì : \(5x+9⋮x+3\)
\(\Rightarrow5\left(x+3\right)+9-15⋮x+3\)
\(\Rightarrow5\left(x+3\right)-6⋮x+3\)
\(\Rightarrow-6⋮x+3\)
\(\Rightarrow6⋮x+3\)
\(\Rightarrow x+3\inƯ_{\left(6\right)}\)
\(\Rightarrow x+3=\left(-6,-3,-2,-1,1,2,3,6\right)\) Máy tớ ko viết được ngoặc khép thông cảm nha
\(\Rightarrow x=\left(-9,-6,-5,-4,-2,-1,0,3\right)\)
=> x-1 là ước của 5
=> x-1 = 1;-1;5;-5
*Nếu x-1=1
=> x=1+1=2 (1)
xy+2=5 => xy=3 (2)
Từ (1)và (2) => y=3:2 ( loại vì y nguyên )
Tự xét tiếp các trường hợp khác, đi
Ta có: 5 = -1 . -5
5 = -5 . -1
5 = 1 . 5
5 = 5 . 1
Vậy ta có bảng sau:
x - 1 | -1 | -5 | 1 | 5 |
xy + 2 | -5 | -1 | 5 | 1 |
x | 0 | -4 | 2 | 6 |
y | ( vô nghiệm ) | ( thuộc Q ) | ( thuộc Q ) | ( thuộc Q ) |
Vậy là không có số nào thuộc Z hay phương trình vô nghiệm.
(x+2)(y-3) = 5
=> x+2 và y-3 thuộc Ư(5) = { -1; -5; 1; 5 }
=> bảng sau :
x+2 | -1 | -5 | 1 | 5 |
y-3 | -5 | -1 | 5 | 1 |
x | -3 | -7 | -1 | 3 |
y | -2 | 2 | 8 | 4 |
(x+2).(y-3)=5
Vì Ư(5)={-1;-5;1;5} mà xy là nhiều số nguyên nên (x+2).(y-3) là một số nguyên
Do đó[x+2=-5 [x=
[y-3=5 => [y=2
[
[
Lời giải:
$xy=x-y$
$\Rightarrow xy-x+y=0$
$\Rightarrow x(y-1)+(y-1)=-1$
$\Rightarrow (x+1)(y-1)=-1$
Với $x,y$ nguyên thì $x+1, y-1$ nguyên. Mà tích của chúng bằng -1 nên ta xét các TH sau:
TH1: $x+1=1, y-1=-1\Rightarrow x=0; y=0$
TH2: $x+1=-1, y-1=1\Rightarrow x=-2; y=2$
=> 13 chia hết cho x-3,y+5
x,y so tu nhien
=> x-3,y+5 thuộc Ư(13)=1,13
Ta có bảng sau:
x-3 | 1 | 13 |
y+5 | 13 | 1 |
x | 4 | 17 |
y | 8 | -4 loại |
=> (x,y)=(4,8)
Vì \(\left(x-3\right)\left(y+5\right)=13\)
\(\Rightarrow\) x-3 và y+5 là các ước của 13
\(Ư\left(13\right)=\left\{1;13\right\}\)
Lập bảng giá trị:
x-3 | 1 | 13 |
y+5 | 13 | 1 |
x | 4 | 16 |
y | 8 | -4 |
Chọn/Loại | Chọn | Loại |
Vậy x \(=4\); y \(=8\).
|x| + |y| \(\ge0\) nên pt trên vô nghiệm
Ta có
IxI >=0 với mọi x thuộc Z
IyI >=0 với mọi x thuộc Z
=> IxI+IyI >=0 với ọi x,y thuộc Z
Mà -5<0 => Không tồn tại giá trị x,y thỏa mãn đề bài