K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Ta có: Giá trị tuyệt đối của các số nguyên bao giờ cũng là số tự nhiên

=> /x/;/y/ và /z/ là số tự nhiên

Mà x>y>z => /z/ > /y/ > /x/

Ta có: 2=1+1+0

Vì 1=1 > 0 => ko tồn tại các cặp x;y;z nguyên thỏa mãn /x/+/y/+/z/=2

7 tháng 3 2016

1 cặp thỏa mãn

13 tháng 3 2016

Có 9 trường hợp:

Cặp 1: 1,1,0

       2: 1,0,1

       3: 0,1,1

       4: -1,-1,0

       5: -1,0,-1

       6: -1,-1,0

       7: 2,0,0

       8: 0,0,2

       9: 0,2,0

úm ba la xì bùa

13 tháng 3 2016

x=0 y=0 z=2

x=0 y=2 z=0

x=2 y=0 z=0

x=0 y=1 z=1

x=1 y=1 z=0

x=1 y=0 z=1

24 tháng 8 2016

xy + 3y - 5x = 9 nhé...mình viết nhầm ạ

 

24 tháng 8 2016

11=1x11=11x1=-1x-11=-11x-1

TH1:

2x-1=1                            y+4=11

2x=2                                y=7

x=1

TH2:

2x-1=11                            y+4=1

2x=12                                y=-5

x=6

TH3:

2x-1=-1                            y+4=-11

2x=-2                                y=-15

x=-1

TH4:

2x-1=-11                            y+4=-1

2x=-10                                y=-5

x=-5

21 tháng 4 2021

\(x^2-xy+y+1=0\)

\(\Leftrightarrow\left(x^2-1\right)-y\left(x-1\right)+2=0\)

\(\Leftrightarrow\left(x+1-y\right)\left(x-1\right)=-2\)

\(\Rightarrow x-1;x+1-y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)

x - 11-12-2
x + 1 - y2-21-1
x203-1
y1331

bảng mình xét nhầm nhé phải là như này : 

x - 11-12-2
x + 1 - y -22-11
x203-1
y5-151
3 tháng 3 2020

\(x\left(2y+3\right)=y+1\)

\(=>2xy+3x-y-1=0\)

\(=>y.\left(2x-1\right)+\left(2x-1\right)=-x\)

\(=>\left(y+1\right).\left(2x-1\right)=-x\)

\(TH1:\orbr{\begin{cases}2x-1=-x\\y+1=1\end{cases}}=>\orbr{\begin{cases}2x+x=1\\y=0\end{cases}}\)

\(=>\orbr{\begin{cases}3x=1\\y=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{3}\\y=0\end{cases}}}\)(Ko thỏa mãn)

\(TH2:\orbr{\begin{cases}2x-1=1\\y+1=-x\end{cases}=>\orbr{\begin{cases}2x=2\\y+1=-x\end{cases}}}\)

\(=>\orbr{\begin{cases}x=1\\y+1=-1\end{cases}=>\orbr{\begin{cases}x=1\\y=-2\end{cases}}}\)(Thỏa mãn)

\(TH3:\orbr{\begin{cases}2x-1=-1\\y+1=x\end{cases}}=>\orbr{\begin{cases}2x=0\\y+1=x\end{cases}}\)

\(=>\orbr{\begin{cases}x=0\\y+1=0\end{cases}=>\orbr{\begin{cases}x=0\\y=-1\end{cases}}}\)(Thỏa mãn)

\(TH4:\orbr{\begin{cases}2x-1=x\\y+1=-1\end{cases}=>\orbr{\begin{cases}2x-x=1\\y=-1-1\end{cases}}}\)

\(=>\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)(Thỏa mãn)

Vậy ...