K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2016

b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng dãy tỉ số bằng nhau :

\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x = 2 . 10 = 20

y = 2 . 15 = 30

z = 2 . 21 = 42 

Vậy : ..... 

13 tháng 3 2016

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

MSC của y là : 20

Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng dãy tỉ số bằng nhau, ta có: 

\(2x+3y-z=186\)

\(\Rightarrow2.15+3.20-28=30+60-28=62\)

\(\frac{186}{62}=3\)

 x = 3 . 15 = 45

 y = 3 . 20 = 60

 z = 3 . 28 = 84

Vậy: ..... 

27 tháng 12 2015

b. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{4}\right)^3=\left(\frac{z}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

Theo t/c dảy tỉ số = nhau:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

=> \(\frac{x^2}{4}=\frac{1}{4}\Rightarrow x^2=\frac{1}{4}.4=1=1^2=\left(-1\right)^2\Rightarrow x=\)+1

=> \(\frac{y^2}{16}=\frac{1}{4}\Rightarrow y^2=\frac{1}{4}.16=4=2^2=\left(-2\right)^2\Rightarrow y=\)+2

=> \(\frac{z^2}{36}=\frac{1}{4}\Rightarrow z^2=\frac{1}{4}.36=9=3^2=\left(-3\right)^2\Rightarrow z=\)+3

Vậy có 2 cặp (x;y;z) là: (1;2;3) và (-1;-2;-3).

a. Áp dụng t/c tỉ số = nhau làm tương tự.

2 tháng 8 2017

a ) \(7x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{7}\)\(x-y=16\)

Theo tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)

\(\Rightarrow\dfrac{x}{3}=-4\Leftrightarrow x=-12\)

\(\Rightarrow\dfrac{x}{7}=-4\Leftrightarrow x=-28\)

Vậy .................

b ) \(\dfrac{x}{2}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)

\(\Leftrightarrow x=2k;y=5k\)

\(x.y=10\)

\(\Rightarrow2k.5k=10\Leftrightarrow10k^2=10\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

2 TH xảy ra :

-Với k = 1 , thì :

\(\left[{}\begin{matrix}x=2.1=2\\y=5.1=5\end{matrix}\right.\)

- Với k=-1, thì :

\(\left[{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

Vậy.............

c ) \(\dfrac{x}{4}=\dfrac{y}{3}\Leftrightarrow\dfrac{2x}{8}=\dfrac{5y}{15}\)\(2x+5y=69\)

Theo tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{2x}{8}=\dfrac{5y}{15}=\dfrac{2x+5y}{8+15}=\dfrac{69}{23}=3\)

\(\Rightarrow\dfrac{2x}{8}=3\Leftrightarrow2x=24\Leftrightarrow x=12\)

\(\Rightarrow\dfrac{5y}{15}=3\Leftrightarrow5y=45\Leftrightarrow y=9\)

d ) \(5x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}\Leftrightarrow\dfrac{4x}{12}=\dfrac{3y}{15}\)\(4x-3y=-99\)

Theo tính chất của dãy tỉ số bằng nhau , ta có :

\(\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{-99}{-3}=33\)

\(\Leftrightarrow\dfrac{4x}{12}=33\Leftrightarrow4x=396\Leftrightarrow x=99\)

\(\Rightarrow\dfrac{3y}{15}=33\Leftrightarrow3y=495\Leftrightarrow y=165\)

Vậy .......

2 tháng 8 2017

a. \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{matrix}\right.\)

25 tháng 8 2017

Từ \(\dfrac{x}{3}=\dfrac{y}{5}\)=> \(\dfrac{x^2}{9}=\dfrac{y^2}{25}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{25}=\dfrac{x^2-y^2}{9-25}=\dfrac{-4}{-16}=\dfrac{1}{4}\)

=> \(\left\{{}\begin{matrix}\dfrac{x^2}{9}=\dfrac{1}{4}\\\dfrac{y^2}{25}=\dfrac{1}{4}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x^2=\dfrac{9}{4}\\y^2=\dfrac{25}{4}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=\dfrac{5}{2}\\y=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

18 tháng 7 2018

Ta có : 

\(A=\left(-\frac{2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)

\(\Rightarrow A=\left(-\frac{2}{5}.\frac{15}{8}\right)\left(x^2.x.-x^3\right)\left(y.y^2.y^2\right)\)

\(\Rightarrow A=-\frac{3}{4}.-x^6.y^5\)

\(\Rightarrow A=-\frac{3}{4}.\left(-1\right)x^6y^5\)

\(\Rightarrow A=\frac{3}{4}x^6y^5\)

Lại có : 

\(\frac{x}{3}=\frac{y}{2}\)và \(x+3y=3\)

ADTCDTSBN , ta có : 

\(\frac{x}{3}=\frac{y}{2}=\frac{3y}{6}=\frac{x+3y}{3+6}=\frac{3}{9}=\frac{1}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{3}\\\frac{y}{2}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.3=1\\y=\frac{1}{3}.2=\frac{2}{3}\end{cases}}}\)

Thay \(x=1;y=\frac{2}{3}\)vào A ta được : 

\(A=\frac{3}{4}.1^6.\left(\frac{2}{3}\right)^5\)

\(\Rightarrow A=\frac{3}{4}.\frac{32}{243}\)

\(\Rightarrow A=\frac{8}{81}\)

Vậy ...

18 tháng 7 2018

ta có hai cách giải

cách 1:

gọi x/3=y/2=k 

=> x=3k và y=2k

vì x+3y=3 => 3k+6k=3

=> 9k=3 => k=1/3

suy ra x=1 và y= 2/3 

* Thay vào x;y vào phép tính trên rồi tự tính nhé

nếu k cho mik mik sẽ gợi ý cách còn lại

THANKS

24 tháng 2 2020

Đang rảnh nên lm linh tinh thử  và kết quả là 

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2k\\y-2=3k\\z-3=4k\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2k+1\\y=3k+2\\z=4k+3\end{cases}}\)

Thay x = 3k + 1 ; y = 3k + 2 và z = 3k + 3 vào 2x + 3y - z = 50 ta có

2. ( 3k + 1 ) + 3 . ( 3k + 2 ) - ( 4k + 3 ) = 50

<=> 6k + 2 + 9k + 6 - 4k - 3 = 50

<=> ( 6k + 9k - 4k ) + ( 2 + 6 - 3 ) = 50

<=> 11k + 5 = 50

<=> 11k = 45 

<=> \(k=\frac{45}{11}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{45}{11}.2+1\\y=\frac{45}{11}.3+2\\z=\frac{45}{11}.4+3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{90}{11}+1=\frac{101}{11}\\y=\frac{135}{11}+2=\frac{157}{11}\\z=\frac{180}{11}+3=\frac{213}{11}\end{cases}}\)

Vậy ....

K thì thôi nhá

@@ Học tốt

18 tháng 7 2019

thánh lầy :)) soi bài

18 tháng 7 2019

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow x=3k;y=4k;z=5k\)

Khi đó:\(5z^2-3x^2-2y^2=594\) trở thành:

\(5\cdot25k^2-3\cdot9k^2-2\cdot16k^2=594\)

\(125k^2-27k^2-32k^2=594\)

\(66k^2=594\)

\(k^2=9\)

\(k=\pm3\)

Bạn thay vào rồi tính

17 tháng 10 2019

Hướng dẫn(hướng làm:v) :

Từ \(3\left(x-1\right)=2\left(y-2\right)\)

\(\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}\)(1) (chia hai vế của đẳng thức trên cho 6)

Từ: \(4\left(y-2\right)=3\left(z-3\right)\)

\(\Rightarrow\frac{y-2}{3}=\frac{z-3}{4}\) (2) (chia cả hai vế của đẳng thức cho 12)

Từ (1) và (2) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Giờ thay x, y, z bởi cái bên trên vào giả thiết 2x + 3y - z = 50 để tìm k.

Tử đó thay ngược lại ta sẽ tìm được x, y, z.

P/s: Bên trên là hướng làm, khi tính toán có thể sai sót, bạn tự check lại. Mình bận nên ko thể làm full được.

15 tháng 10 2019

Xin lỗi các bn nhé đây mới là đề bài đúng vừa nãy mk viết sai mong các bn thông cảmleuleu