\(\dfrac{x}{2}=\dfrac{y}{5}v\text{à }x.y=10\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

a ) \(7x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{7}\)\(x-y=16\)

Theo tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)

\(\Rightarrow\dfrac{x}{3}=-4\Leftrightarrow x=-12\)

\(\Rightarrow\dfrac{x}{7}=-4\Leftrightarrow x=-28\)

Vậy .................

b ) \(\dfrac{x}{2}=\dfrac{y}{5}\)

Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)

\(\Leftrightarrow x=2k;y=5k\)

\(x.y=10\)

\(\Rightarrow2k.5k=10\Leftrightarrow10k^2=10\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

2 TH xảy ra :

-Với k = 1 , thì :

\(\left[{}\begin{matrix}x=2.1=2\\y=5.1=5\end{matrix}\right.\)

- Với k=-1, thì :

\(\left[{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

Vậy.............

c ) \(\dfrac{x}{4}=\dfrac{y}{3}\Leftrightarrow\dfrac{2x}{8}=\dfrac{5y}{15}\)\(2x+5y=69\)

Theo tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{2x}{8}=\dfrac{5y}{15}=\dfrac{2x+5y}{8+15}=\dfrac{69}{23}=3\)

\(\Rightarrow\dfrac{2x}{8}=3\Leftrightarrow2x=24\Leftrightarrow x=12\)

\(\Rightarrow\dfrac{5y}{15}=3\Leftrightarrow5y=45\Leftrightarrow y=9\)

d ) \(5x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}\Leftrightarrow\dfrac{4x}{12}=\dfrac{3y}{15}\)\(4x-3y=-99\)

Theo tính chất của dãy tỉ số bằng nhau , ta có :

\(\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{-99}{-3}=33\)

\(\Leftrightarrow\dfrac{4x}{12}=33\Leftrightarrow4x=396\Leftrightarrow x=99\)

\(\Rightarrow\dfrac{3y}{15}=33\Leftrightarrow3y=495\Leftrightarrow y=165\)

Vậy .......

2 tháng 8 2017

a. \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{matrix}\right.\)

17 tháng 7 2017

a,

\(\dfrac{2x}{3y}=\dfrac{-1}{3}\\ \Rightarrow\dfrac{2x}{-1}=\dfrac{3y}{3}\\ \Leftrightarrow\dfrac{-2x}{1}=\dfrac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{-2x}{1}=\dfrac{3y}{3}=\dfrac{-2x+3y}{1+3}=\dfrac{7}{4}\)

\(\dfrac{-2x}{1}=\dfrac{7}{4}\Rightarrow-2x=\dfrac{7}{4}\Rightarrow x=\dfrac{7}{4}:\left(-2\right)=\dfrac{-7}{8}\\ \dfrac{3y}{3}=\dfrac{7}{4}\Rightarrow y=\dfrac{7}{4}\)

Vậy \(x=\dfrac{-7}{8};y=\dfrac{7}{4}\)

b,

\(\dfrac{x}{3}=\dfrac{y}{4}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{6}=\dfrac{5y}{20}=\dfrac{2x+5y}{6+20}=\dfrac{10}{26}=\dfrac{5}{13}\\ \dfrac{x}{3}=\dfrac{2x}{6}=\dfrac{5}{13}\Rightarrow x=\dfrac{5}{13}\cdot3=\dfrac{15}{13}\\ \dfrac{y}{4}=\dfrac{5y}{20}=\dfrac{5}{13}\Rightarrow y=\dfrac{5}{13}\cdot4=\dfrac{20}{13}\)

Vậy \(x=\dfrac{15}{13};y=\dfrac{20}{13}\)

c,

\(7x=3y\\ \Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \dfrac{x}{3}=-4\Rightarrow x=\left(-4\right)\cdot3=-12\\ \dfrac{y}{7}=-4\Rightarrow y=\left(-4\right)\cdot7=-28\)

Vậy \(x=-12;y=-28\)

d,

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{z}{-2}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{1}=\dfrac{-2z}{4}=\dfrac{x+y+\left(-2z\right)}{5+1+4}=\dfrac{x+y-2z}{10}=\dfrac{160}{10}=16\\ \dfrac{x}{5}=16\Rightarrow x=16\cdot5=80\\ \dfrac{y}{1}=16\Rightarrow y=16\\ \dfrac{z}{-2}=\dfrac{-2z}{4}=16\Rightarrow z=16\cdot\left(-2\right)=-32\)

Vậy \(x=80;y=16;z=-32\)

e,

\(\dfrac{x}{10}=\dfrac{y}{5}\Rightarrow\dfrac{x}{20}=\dfrac{y}{10};\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{y}{10}=\dfrac{z}{15}\\ \Rightarrow\dfrac{x}{20}=\dfrac{y}{10}=\dfrac{z}{15}\\ \Leftrightarrow\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{40}=\dfrac{3y}{30}=\dfrac{4z}{60}=\dfrac{2x-3y+4z}{40-30+60}=\dfrac{330}{70}=\dfrac{33}{7}\)

\(\dfrac{x}{20}=\dfrac{2x}{40}=\dfrac{33}{7}\Rightarrow x=\dfrac{33}{7}\cdot20=\dfrac{660}{7}\\ \dfrac{y}{10}=\dfrac{3y}{30}=\dfrac{33}{7}\Rightarrow y=\dfrac{33}{7}\cdot10=\dfrac{330}{7}\\ \dfrac{z}{15}=\dfrac{4z}{60}=\dfrac{33}{7}\Rightarrow z=\dfrac{33}{7}\cdot15=\dfrac{495}{7}\)

Vậy \(x=\dfrac{660}{7};y=\dfrac{330}{7};z=\dfrac{495}{7}\)

f,

\(\dfrac{x}{-2}=\dfrac{-y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{-2}=\dfrac{-2y}{8}=\dfrac{3z}{15}=\dfrac{x+\left(-2y\right)+3z}{\left(-2\right)+8+15}=\dfrac{x-2y+3z}{21}=\dfrac{1200}{21}=\dfrac{400}{7}\)

\(\dfrac{x}{-2}=\dfrac{400}{7}\Rightarrow x=\dfrac{400}{7}\cdot\left(-2\right)=\dfrac{-800}{7}\\ \dfrac{-y}{4}=\dfrac{-2y}{8}=\dfrac{400}{7}\Rightarrow-y=\dfrac{400}{7}\cdot4=\dfrac{1600}{7}\Rightarrow y=\dfrac{-1600}{7}\\ \dfrac{z}{5}=\dfrac{3z}{15}=\dfrac{400}{7}\Rightarrow z=\dfrac{400}{7}\cdot5=\dfrac{2000}{7}\)

Vậy \(x=\dfrac{-800}{7};y=\dfrac{-1600}{7};z=\dfrac{2000}{7}\)

g,

\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{6}=\dfrac{3y}{24}=\dfrac{z}{5}=\dfrac{2x+3y-z}{6+24-5}=\dfrac{50}{25}=2\)

\(\dfrac{x}{3}=\dfrac{2x}{6}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{8}=\dfrac{3y}{24}=2\Rightarrow y=2\cdot8=16\\ \dfrac{z}{5}=2\Rightarrow z=2\cdot5=10\)

Vậy \(x=6;y=16;z=10\)

Làm gấp nên k có kiểm tra, bn bấm máy tính dò lại nhé

12 tháng 3 2018

a)ta có 4+x/7+y=4/7

<=>7x+28=28+4y

<=> 7x=4y

lại có x+y=22

=>4/7y+y=22

<=>11/7y=22 <=> y=14

<=> x= 4/7*14=8

vậy x=8, y=14

12 tháng 3 2018

b) Từ x/3=y/4 va y/5=z/6-->x/15=y/20=z/24 (1)
(1) = 2x/30=3y/60=4z/96=(2x+3y+4z)/186 (2) (t/c dãy tỉ số bằng nhau)
Ta lại có
(1) = 3x/45=4y/80=5z/120=(3x+4y+5z)/245 (3)(t/c dãy tỉ số bằng nhau)
Từ (2)(3) ta có(2x+3y+4z)/186=(3x+4y+5z)/245
Vậy M = (2x+3y+4z)/(3x+4y+5z)=186/245

18 tháng 8 2017

a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)

Đến đây tự làm tiếp nhé

b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x = 75, y = 50, z = 30

c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)

\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)

\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)

\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)

=> x=... , y=... , z=...

d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3

Với k = 3 => x = 6, y = 15

Với k = -3 => x = -6, y = -15

Vậy...

e, Tương tự câu d

18 tháng 8 2017

b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)

=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)

     \(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)

      \(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)

31 tháng 7 2018

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\)

Vậy \(\left\{{}\begin{matrix}x=3.2=6\\y=3.5=15\end{matrix}\right.\)

b) \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)

Vậy \(\left\{{}\begin{matrix}x=\left(-4\right).3=-12\\y=\left(-4\right).7=-28\end{matrix}\right.\)

c) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)

Ta có:

\(xy=54\)

\(\Leftrightarrow2k.3k=54\)

\(\Leftrightarrow6k^2=54\)

\(\Leftrightarrow k^2=9\)

\(\Leftrightarrow k=\pm3\)

+ Với \(k=-3\): \(\left\{{}\begin{matrix}x=2.\left(-3\right)=-6\\y=3.\left(-3\right)=-9\end{matrix}\right.\)

+ Với \(k=3\): \(\left\{{}\begin{matrix}x=2.3=6\\y=3.3=9\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(-6;-9\right);\left(6;9\right)\)

31 tháng 7 2018

bài này áp dụng dãy tỉ số bằng nhau là ra

\(\dfrac{x}{2}\)=\(\dfrac{y}{5}\) và x+y = 21

áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}\)= \(\dfrac{y}{5}\)=> \(\dfrac{x+y}{2+5}\) = \(\dfrac{21}{7}\) = 3

=> x = 2 => x = 3.2 = 6

y = 5 => y = 5.3 = 15

còn câu b và c tương tự câu a) (câu c đặt K rồi làm)

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

11 tháng 7 2017

a)Xét \(x=\dfrac{y}{2}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k\\z=3k\end{matrix}\right.\) (1)

Thay (1) vào 4x - 3y + 2z = 36

\(\Rightarrow4.k-3.2k+2.3k=36\)

\(\Rightarrow4k-6k+6k=36\Rightarrow4k=36\)

\(\Rightarrow k=\dfrac{36}{4}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2.4=8\\z=3.4=12\end{matrix}\right.\)

Vậy...............................................................

b) Xét \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=7k\end{matrix}\right.\) (2)

Thay (2) vào 2x - 3z = 44

\(\Rightarrow2.5k-3.7k=44\)

\(\Rightarrow-11k=44\Rightarrow k=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.\left(-4\right)=-20\\y=4.\left(-4\right)=-16\\z=7.\left(-4\right)=-28\end{matrix}\right.\)

Vậy,................................................

c) Xét \(\dfrac{-x}{7}=\dfrac{y}{11}=\dfrac{-z}{5}=\dfrac{x}{-7}=\dfrac{z}{-5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-7k\\y=11k\\z=-5k\end{matrix}\right.\) (3)

Thay (3) vào -3z - 2y - x = -88

\(\Rightarrow-3.\left(-5k\right)-2.11k-\left(-7k\right)=-88\)

\(\Rightarrow15k-22k+7k=-88\Rightarrow0k=88\)

\(\Rightarrow k\in\varnothing\)

Suy ra: Không có cặp ( x; y; z) thỏa mãn

Vậy.................................................................

d) Xét \(\dfrac{y}{12}=\dfrac{x}{-5}=\dfrac{z}{11}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5k\\y=12k\\z=11k\end{matrix}\right.\) (4)

Thay (4) vào 5y - 2z = 114

\(\Rightarrow6.12k-2.11k=114\)

\(\Rightarrow50k=114\Rightarrow k=2,28\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5.2,28=-11,4\\y=12.2,28=27,36\\z=25,08\end{matrix}\right.\)

Vậy..............................................

e) Xét \(\dfrac{x}{25}=\dfrac{y}{17}=\dfrac{z}{32}=k\)

\(\left\{{}\begin{matrix}x=25k\\y=17k\\z=32k\end{matrix}\right.\) (5)

Thay (5) vào -2z + 3y - 4x = -452

\(\Rightarrow\left(-2\right).32k+3.17k-4.25k=-452\)

\(\Rightarrow-113k=-452\Rightarrow k=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=25.5=100\\y=17.4=68\\z=32.4=128\end{matrix}\right.\)

Vậy.......................................................

11 tháng 7 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{4x}{4}-\dfrac{3y}{6}+\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)

+) \(\dfrac{x}{1}=9\Rightarrow x=9\)

+) \(\dfrac{y}{2}=9\Rightarrow y=18\)

+) \(\dfrac{z}{3}=9\Rightarrow z=27\)

Vậy x = 9; y = 18; z = 27.

tương tự

b: \(ab\cdot bc\cdot ac=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow\left(abc\right)^2=\dfrac{1}{4}\)

Trường hợp 1: abc=1/2

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}:\dfrac{1}{2}=1\\a=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\\b=\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{1}{2}\cdot\dfrac{4}{3}=\dfrac{2}{3}\end{matrix}\right.\)

Trường hợp 2: abc=-1/2

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-\dfrac{3}{4}\\b=-\dfrac{2}{3}\end{matrix}\right.\)

c: Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{y-2}{1}\\\dfrac{y-2}{3}=\dfrac{z-3}{4}\end{matrix}\right.\Leftrightarrow\dfrac{x-1}{6}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{6}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot6-3\cdot6+3\cdot4}=\dfrac{45}{6}=\dfrac{15}{2}\)

Do đó: x-1=45; y-2=45/2; z-3=30

=>x=46; y=49/2; z=33