K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có:

\(x^5+x^4+1=\left(x^2+x-1\right)\left(x^3-x+1\right)\)

Đặt: \(x^2+x-1=p^n;x^3-x+1=p^m\)

Với \(x=1\)hoặc \(x=2\)ta đều có giá trị: \(\left(1;1;3\right)\)và \(\left(2;2;7\right)\)

\(x^3-x+1=\left(x-1\right)\left(x^2+x+1\right)-\left(x-2\right)\)(Không thỏa mãn)

Vậy \(\left(x,y,p\right)\in\left\{\left(1;1;3\right);\left(2;2;7\right)\right\}\)

15 tháng 8 2021

\(x^3+y^3=\left(x+y\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-x-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\left(1\right)\\x^2-xy+y^2-x-y=0\left(2\right)\end{matrix}\right.\)

(1) thì tự làm nốt
\(\left(2\right)\Leftrightarrow x^2-x\left(y+1\right)+y^2-y=0\)

Xem phương trình ẩn x. Để phương trình có nghiệm thì:
\(\Delta_x=\left(y+1\right)^2-4\left(y^2-y\right)\ge0\)

\(\Leftrightarrow0\le y\le2\)

Làm nốt

23 tháng 12 2017

M là số lớn nhất trong các số x1+x2x2+x3,x3+x4,x4+x5,

suy ra;3M >=(x1+x2)+(x2+x3)+(x4+x5)

suy ra 3M >=300+X2

suy ra M>=100+X2/3>=100

Với x2=x4=0,x1=x3=x5=100 thì M =100

Vậy GTNN của M =100

NM
14 tháng 8 2021

ta có :

\(x=y^4+4=y^4+4y^2+4-4y^2\) 

hay \(x=\left(y^2+2\right)^2-\left(2y\right)^2=\left(y^2+2y+2\right)\left(y^2-2y+2\right)\)

Vì x là số nguyên tố nên \(\orbr{\begin{cases}y^2+2y+2=\pm1\\y^2-2y+2=\pm1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

thay lại ta có x =5 thỏa mãn đề bài

5 tháng 12 2016

xem lai de di (-5y+2y) de gi la qua ..._> them so mu hay (...) gi do nua

NV
22 tháng 10 2021

\(x^3+y^3+y^3\ge3\sqrt[3]{x^3.y^3.y^3}=3xy^2\)

\(x^3+1+1\ge3x\)

\(2\left(y^3+1+1\right)\ge6y\)

Cộng vế:

\(2\left(x^3+2y^3\right)+6\ge3\left(x+2y+xy^2\right)=12\)

\(\Rightarrow x^3+2y^3\ge3\) (đpcm)

Dấu "=" xảy ra khi \(x=y=1\)

22 tháng 10 2021

em cảm ơn thầy ạ