K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 4 2021

Trừ vế cho vế:

\(xy+z-\left(x+yz\right)=1\)

\(\Leftrightarrow x\left(y-1\right)-z\left(y-1\right)=1\)

\(\Leftrightarrow\left(x-z\right)\left(y-1\right)=1\)

Do \(y\) nguyên dương \(\Rightarrow y\ge1\Rightarrow y-1\ge0\Rightarrow x-z>0\)

\(\Rightarrow\left\{{}\begin{matrix}x-z=1\\y-1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\z=x-1\end{matrix}\right.\)

Thế vào \(x+yz=2020\)

\(\Rightarrow x+2\left(x-1\right)=2020\)

\(\Leftrightarrow3x=2022\Rightarrow x=674\Rightarrow z=673\)

Vậy \(\left(x;y;z\right)=\left(674;673;2\right)\)

24 tháng 6 2019

Áp dụng hđt: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)Ta có: \(x^3+y^3+3xyz=z^3\Leftrightarrow x^3+y^3+3xyz-z^3=0\Leftrightarrow\left(x+y-z\right)\left(x^2+y^2+z^2-xy+xz+yz\right)=0\)

Th1: \(x+y-z=0\Leftrightarrow x+y=z\Rightarrow z^3=\left(2x+2y\right)^2=4z^2\Leftrightarrow z=4\)(do z là số nguyen dương)

\(\Rightarrow x+y=4\)\(\Rightarrow\left(x,y\right)\in\left\{\left(1,3\right)\left(2,2\right)\left(3,1\right)\right\}\)

\(TH2:x^2+y^2+z^2-xy+xz+yz=0\Leftrightarrow\frac{\left(x-y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2}{2}=0\)(loại vì x,y,z nguyên dương nên VT>0 )

Vậy...

17 tháng 12 2016

Có: \(x+y+z=3\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

Vì: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0,\forall x,y,z\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow3\left(xy+yz+zx\right)\le x^2+y^2+z^2+2\left(xy+yz+zx\right)=9\)

\(\Leftrightarrow xy+yz+zx\le3\)

Vậu GTLN của P là 3 khi \(x=y=z=1\)

 

14 tháng 3 2019

Tại sao

3(xy+yz+zx) \(\le x^2+y^2+z^2+2\left(xy+yz+zx\right)\)=9

17 tháng 7 2016

 <=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0 
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0 
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0 
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0 

Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0 
<=> x = 1/2y và 1/2y = 1 và z = 1. 
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.

17 tháng 7 2016

Quá dễ bằng 0