K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2020

Ủa đề bài là sao mình không hiều bạn?

4 tháng 10 2020

Làm hai trường hợp nhé :v trúng cái nào thì trúng

1. x3 - x = 0

<=> x( x2 - 1 ) = 0

<=> x( x - 1 )( x + 1 ) = 0

<=> x = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

<=> x = 0 hoặc x = ±1

2. x3 + x = 0

<=> x( x2 + 1 ) = 0

<=> x = 0 hoặc x2 + 1 = 0

<=> x = 0 < vì x2 + 1 ≥ 1 > 0 ∀ x >

12 tháng 8 2023

\(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow x-3=\left(x-3\right)^2\)

\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

___________

\(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot\dfrac{1}{2}\cdot x^2+3\cdot\left(\dfrac{1}{2}\right)^2\cdot x+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{1}{2}\)

\(\Leftrightarrow x=-\dfrac{1}{4}\)

loading...  loading...  

Ta có: \(x+y+z=0\)

nên \(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

Ta có: \(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)

\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}\)

\(=\dfrac{-z}{y}\cdot\dfrac{-x}{z}\cdot\dfrac{-y}{x}\)

\(=\dfrac{-\left(x\cdot y\cdot z\right)}{x\cdot y\cdot z}=-1\)

\(x^3-3x^2+3x-1=-8\)

\(\Leftrightarrow x-1=-2\)

hay x=-1

5 tháng 10 2021

là x^2 cơ bạn ơi

a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)

Vậy: Khi x-y=7 thì A=100

b) Ta có: \(x+y=2\)

\(\Leftrightarrow\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy+10=4\)

\(\Leftrightarrow2xy=-6\)

\(\Leftrightarrow xy=-3\)

Ta có: \(A=x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)

Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:

\(A=2\cdot\left(10+3\right)=2\cdot13=26\)

Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26

16 tháng 2 2021

\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)

NV
21 tháng 2 2020

\(A=x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2=3\)

\(\Rightarrow A_{min}=3\) khi \(x=y=z=1\)

22 tháng 7 2021

b) 5x(x-2000)-x+2000=0

\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)

22 tháng 7 2021

Ai giúp minh làm bài 5 phía trên với

 

17 tháng 10 2021

\(3x^2-9=0\Rightarrow x^2=3\Rightarrow x=\pm\sqrt{3}\)

Bạn kiểm tra lại đề nhé.