Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 phân số đó là \(\frac{a}{x},\frac{b}{y},\frac{c}{z}\)
Ta có các tử tỉ lệ với 3;4;5=>a:b:c=3:4:5=>\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
=>\(\hept{\begin{cases}a=3k\\b=4k\\c=5k\end{cases}}\)
Lại có các mẫu tỉ lệ với 5,1,2=>x:y:z=5:1:2=>\(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{1}=\frac{z}{2}=h\)
=> \(\hept{\begin{cases}x=5h\\y=h\\z=2h\end{cases}}\)
Ta có tổng 3 phân số là \(\frac{213}{70}\)
=> \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{213}{70}\)
(=) \(\frac{3k}{5h}+\frac{4k}{h}+\frac{5k}{2h}=\frac{213}{70}\)
(=) \(\frac{k}{h}.\left(\frac{3}{5}+4+\frac{5}{2}\right)=\frac{213}{70}\)
(=) \(\frac{k}{h}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{a}{x}=\frac{9}{35}\\\frac{b}{y}=\frac{12}{7}\\\frac{c}{z}=\frac{15}{14}\end{cases}}\)
bài 3
Ta có \(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
= \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6a}{4}\)
=\(\frac{15a-10b+6c-15a+10b-6a}{25+9+4}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\left(=\right)\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\left(=\right)\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}}\)
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Gọi \(M=\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)
\(M=\frac{5\left(3a-2b\right)}{25}=\frac{3\left(2c-5a\right)}{9}=\frac{2\left(5b-3c\right)}{4}\)
Áp dụng TC Dãy tỉ số bằng nhau:
\(M=\frac{5\left(3a-2b\right)+3\left(2c-5a\right)+2\left(5b-3c\right)}{25+9+4}\)
\(M=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}\)
\(M=\frac{0}{25+9+4}=0\)
\(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}\Leftrightarrow\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\Rightarrow}\frac{a}{2}=\frac{b}{3}=\frac{c}{5}}\)
gọi \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=x\Rightarrow\hept{\begin{cases}a=2x\\b=3x\\c=5x\end{cases}}\)
thay vào \(a^2+275=bc\)
\(\left(2x\right)^2+275=3x.5x\)
\(4x^2+275=15x^2\)
\(275=11x^2\)
\(x^2=25\)
Vậy \(\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
=> \(\hept{\begin{cases}a=10\\b=15\\c=25\end{cases}}\)hoặc \(\hept{\begin{cases}a=-10\\b=-15\\c=-25\end{cases}}\)
Xong :>
P/S: Dấu ngoặc vuông kí hiệu cho "hoặc", ngoặc nhọn kí hiệu cho "và"
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a} = \frac{a+b+c}{b+c+a}=1\) (tính chất của dãy tỉ số bằng nhau)
=> a=b=c
chúc bn học giỏi
ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a=b=c\)
\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}=\frac{\left(3a-2b\right)+\left(2c-5a\right)+\left(5b-3c\right)}{5+3+2}=\frac{3a+3b+3c}{10}=\frac{3.\left(a+b+c\right)}{10}=15\)Rồi tự tìm a,b,c
5(3a-2b)/25=3(2c-5a)/9=2(5b-3c)/4
15a-10b/25=6c-15a/9=10b-6c/4
theo tc dãy tỉ số bằng nhau ta có:
15a-10b/25=6c-15a/9=10b-6c/4
15a-10b+6c-15a+10b-6c/25+9+4
=0/4
=> 3a-2b/5=2c-5a/3=5b-3c/2=0
=> 3a-2b=5.0=0 => 3a=2b thì a/2=b/3
=> 2c-5a=3.0=0 => 2c=5a thì c/5=a/2
rồi bạn tự giải đi: a/2=b/3=c/5 áp dụng tc dãy tỉ số bằng nhau