Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=x^2-x\)
\(B=x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\)
mà \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{1}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy Bmin = 1/4 <=> x = 1/2
P.s : đây là tìm B min
Còn cách nữa tìm Bmax :v
Vì \(x^2\ge0\forall x\)
\(\Rightarrow B\le x\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
Vậy Bmax = 0 <=> x = 0
\(\Rightarrow12+20x-60=45x-15\Leftrightarrow25x=-33\Leftrightarrow x=-\dfrac{33}{25}\)
\(2x-1-x^2\\ =x+x-1-x^2\\ =\left(x-x^2\right)+\left(x-1\right)\\ =-x\left(x-1\right)+\left(x-1\right)\\ =\left(x-1\right)\left(1-x\right)\)
Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+9\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-9x^2+27x+9x^2+18x+9=15\)
\(\Leftrightarrow45x=6\)
hay \(x=\dfrac{2}{15}\)
a. 2x2.(3x3 + 2x)
= 2x2.3x3 + 2x2.2x
= 6x5 + 4x3
b. 3x.(x2 + 2x + 2)
= 3x.x2 + 3x.2x + 3x.2
= 3x3 + 6x2 + 6x
\(\left(x-2\right)^2-x\left(x+2\right)=1\)
\(=>x^2-4x+4-x^2-2x=1\)
\(-6x+4=1=>-6x=1-4=>-6x=3=>x=\frac{1}{2}\)
Vậy x=\(\frac{1}{2}\)
Gọi số cần tìm là x
Theo đề, ta có:
-9<4x<-6
=>4x=-8
hay x=-2
Chứng Minh: a) a2 + b2 >= 2ab với mọi ab
b) x2+2x+3>0 với mọi x
Trình bày rõ ràng giúp tớ nha (toán8)
câu a :
\(a^2+b^{^{ }2}\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)
( a - b ) ^ 2 >= 0 là điều hiển nhiên nên suy ra \(a^2+b^2\ge2ab\)với mọi a ,b
câu b :
\(^{x^2+2x+3\ge0\Leftrightarrow x^2+2x+1+2\ge0\Leftrightarrow\left(x+1\right)^2+2\ge0}\)
vì ( x+1 )^2 >= 0 nên (x + 1 )^2 +2 > 0 với mọi x
B có, x2>hoặc = 0 => x-x2<x
dấu = xảy ra khi x2=0 -> x=0=> MAX B =0
\(B=x-x^2\)
\(B=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)
\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTLN của \(B\) là \(\frac{1}{4}\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~