![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có:
\(9a^2+b^2+2c^2-18a-6b+4c+20=0\)
\(\Leftrightarrow (9a^2-18a+9)+(b^2-6b+9)+2(c^2+2c+1)=0\)
\(\Leftrightarrow (3a-3)^2+(b-3)^2+2(c+1)^2=0\)
Vì \((3a-3)^2,(b-3)^2,(c+1)^2\geq 0\) với mọi \(a,b,c\) nên :
\((3a-3)^2+(b-3)^2+2(c+1)^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} 3a-3=0\\ b-3=0\\ c+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=3\\ c=-1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình xem phép làm câu 1 ạ.
Đề là?
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)
Chứng minh tương đương
\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc - 9ab + 6b2 \(\le\)0 ( quy đồng ) (2)
Từ (1) <=> 2ac = ab + bc Thay vào (2) <=> 6ab + 6bc - 9bc - 9ab + 6b2 \(\le\)0
<=> a + c \(\ge\)2b
Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng
Dấu "=" xảy ra <=> a = c = b
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề đúng là \(T=\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Ta có:
\(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\) (chứng minh cái này chắc dễ)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)
Tương tự ta có:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right)\)và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)
Cộng theo vế của (1);(2) và (3) ta có:
\(T\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}\)(đpcm)
Dấu = khi \(a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có : x + y + z = 0 \(\Rightarrow\)( x + y + z )2 = 0 \(\Rightarrow\)x2 + y2 + z2 = - 2 ( xy + yz + xz )\(S=\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}=\frac{-2\left(xy+yz+xz\right)}{2\left(x^2+y^2+z^2\right)-2\left(yz+xz+xy\right)}\)
\(S=\frac{-2\left(xy+yz+xz\right)}{-4\left(xy+yz+xz\right)-2\left(yz+xz+xy\right)}=\frac{-2\left(xy+yz+xz\right)}{-6\left(xy+yz+xz\right)}=\frac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow abc\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
CHÚC BẠN HỌC TỐT
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
Vậy \(E=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:\(a^2-5a+2=0\Rightarrow a^2=5a-2\)
\(P=a^5-a^4-18a^3+9a^2-5a+2017+\frac{a^4-40a^2+4}{a^2}\)
\(=a^5-a^4-18a^3+9a^2-5a+2017+\frac{\left(a^2-2\right)^2-36a^2}{a^2}\)
\(=a^5-a^4-18a^3+9a^2-5a+2015+2+\frac{\left(a^2-2\right)^2-\left(6a\right)^2}{a^2}\)
\(=\left(a^2-5a+2\right)\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=0\times\left(a^3+4a^2+1\right)+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=0+2015+\frac{\left(a^2-2+6a\right)\left(a^2-2-6a\right)}{a^2}\)
\(=2015+\frac{\left(5a-2-6a-2\right)\left(5a-2+6a-2\right)}{a^2}\)Vì \(a^2=5a-2\)
\(=2015+\frac{-\left(a+4\right)\left(11a-4\right)}{a^2}\)
\(=2015+\frac{-\left(a^2+40a-16\right)}{a^2}\)
\(=2015+\frac{-\left[a^2+8\left(5a-2\right)\right]}{a^2}\)Vì \(a^2=5a-2\)
\(=2015+\frac{-\left(a^2+8a^2\right)}{a^2}\)
\(=2015+\frac{-9a^2}{a^2}\)
\(=2015+\frac{-9}{1}\)
\(=2015-9\)
\(=2006\)
Cre:hoidap247
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Từ giả thiết : \(a^2+2c^2=3b^2+19\Rightarrow a^2+2c^2-3b^2=19\)
Ta có : \(\frac{a^2+7}{4}=\frac{b^2+6}{5}=\frac{c^2+3}{6}=\frac{3b^2+18}{15}=\frac{2c^2+6}{12}\)\(=\frac{a^2+7+2c^2+6-3b^2-18}{4+12-15}=\frac{14}{1}=14\)
\(\Rightarrow\)\(a^2=49\Rightarrow a=7\)
\(\Rightarrow\)\(b^2=64\Rightarrow b=8\)
\(\Rightarrow\)\(c^2=81\Rightarrow c=9\)
b) \(P=x^4+2x^3+3x^2+2x+1\)
\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)
\(=\left(x^2+x+1\right)^2\)
Vì \(x^2+x+1=\left(x^2+2x\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Nên \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
Dấu bằng xảy ra khi và chỉ khi \(x=-\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
9a2 + b2 + c2 - 18a + 2c - 6b + 19 = 0
<=> (9a2 - 18a + 9) + (b2 - 6b + 9) + (c2 + 2c + 1) = 0
<=> (3a - 3)2 + (b - 3)2 + (c + 1)2 = 0
<=> \(\hept{\begin{cases}3a-3=0\\b-3=0\\c+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=3\\c=-1\end{cases}}\)
Vậy a = 1 ; b = 3 ; c = -1 là nghiệm phương trình
\(9a^2+b^2+c^2-18a+2c-6b+19=0\)
\(\Leftrightarrow\left(9a^2-18a+9\right)+\left(b^2-6b+9\right)+\left(c^2+2c+1\right)=0\)
\(\Leftrightarrow\left(3a-3\right)^2+\left(b-3\right)^2+\left(c+1\right)^2=0\)
Vì \(\hept{\begin{cases}\left(3a-3\right)^2\\\left(b-3\right)^2\\\left(c+1\right)^2\end{cases}\ge0\forall a,b,c}\)
\(\Rightarrow\left(3a-3\right)^2+\left(b-3\right)^2+\left(c+1\right)^2\ge0\forall a,b,c\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}3a-3=0\\b-3=0\\c+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=3\\c=-1\end{cases}}}\)
Vậy...