K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Cách giải 1 (Toán kết hợp với máy tính) Vì 504 = 7 x 8 x 9 nên để 11a8b1987c chia hết cho 8 thì ba số tận cùng 87c phải chia hết cho 8. Vì 87c = 800 + 7c nên để 87c chia hết cho 8 thì c chỉ có thể bằng 2. Số cần tìm có dạng 11a8b19872.
Để số đã cho chia hết cho 9 thì: 37+a+b = 36 +1 + a + b phải chia hết cho 9, tức là a + b + 1=9 hoặc a + b + 1 = 18. Suy ra : a + b = 8 hoặc a + b = 17.
Thử tất cả các trường hợp trên máy tính ta có các kết quả sau :
[​IMG]

Cách giải 2 (Suy luận toán học) Ta có:
[​IMG]

Như vậy, để số đã cho chia hết cho 7 thì 3a-2b+1 phải chia hết cho 7. Vì 3a-2b+1<=3a+1<=28 nên 3a-2b+1 chỉ có thể bằng một trong các số: 0, 7, 14, 21, 28. 
Vì số đã cho đồng thời phải chia hết cho 9 nên a và b đồng thời phải thỏa mãn hai điều kiện: a + b = 17 hoặc a + b = 8 và 3a -2b +1 bằng một trong các số: 0, 7, 14, 21, 28. 
Trường hợp 1 3a -2b +1 Từ điều kiện a+b=8 ta được a=3,b=5
Trường hợp 2 Hệ 3a -2b +1 =7 và a+b=8 không có nghiệm nguyên.
Trường hợp 3 Hệ 3a -2b +1 = 14 và a+b=8 không có nghiệm nguyên.
Trường hợp 4 Hệ 3a -2b +1=21 và a+b=8 không có nghiệm nguyên.
Trường hợp 5 Hệ 3a -2b +1=28 và a+b=8 không có nghiệm nguyên.
Trường hợp 6 Hệ 3a -2b +1=0 và a+b=17 không có nghiệm nguyên.
Trường hợp 7 Hệ 3a -2b +1=7 và a+b=17 có nghiệm a=8, b=9.
Trường hợp 8 Hệ 3a -2b +1=14 và a+b=17 không có nghiệm nguyên.
Trường hợp 9 Hệ 3a -2b +1=21 và a+b=17 không có nghiệm nguyên.
Trường hợp 10 Hệ 3a -2b +1=28 và a+b=17 không có nghiệm nguyên.
Đáp số: Số cần tìm là 1138519872 và 1188919872 .

29 tháng 10 2016

2/ Ta phân tích

ax3 + bx2 + c = (x + 2)[a​x2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c

Từ đó kết hợp với đề bài ta có hệ

\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)

29 tháng 10 2016

Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)

= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)

Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

3 tháng 11 2016

Tìm a,b,c biết ax^3 + bx^2 + c chia hết x+2 và chia x^2 - 1 dư x + 5

ax³+bx²+c =ax³+2ax²+(b-2a)x²+2(b-2a)x-2(b-2a)x-4(b...
=ax²(x+2)+(b-2a)x(x+2)-2(b-2a)(x+2)+4(b...
=(x+2)[ax²+(b-2a)x-2(b-2a)]+4b-8a+c
ax³+bx²+c chia hết cho x+2 =>4b-8a+c=0. (1)
ax³+bx²+c =ax³-ax+bx²-b+ax+b+c
=(x²-1)(ax+b)+ax+b+c. chia cho x²-1 dư ax+b+c. đồng nhất hệ số của số dư với x+5 ta có a=1; b+c=5. (2)
Thay a=1 vào (1) => 4b+c=8 (3).
(3)-(2) => 3b=3 =>b=1. thay b=1 vào (2)=>c=4
ĐS: a=1; b=1; c=4.

12 tháng 3 2018

Mình sửa lại là \(a^2+b^2+c^2\)là số nguyên tố nhé