Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)
Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)
Vậy \(\left(P\right):y=2x^2-x+3\)
Sửa đề: cắt trục tung tại điểm có tung độ bằng -3
Thay x=0 và y=-3 vào (P), ta được:
\(a\cdot0^2+b\cdot0+c=-3\)
=>0+0+c=-3
=>c=-3
vậy: (P): \(y=ax^2+bx-3\)
Tọa độ đỉnh là I(-1;-4) nên ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=-1\\-\dfrac{b^2-4\cdot a\cdot\left(-3\right)}{4a}=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=2a\\\dfrac{b^2+12a}{4a}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\\left(2a\right)^2+12a=16a\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=2a\\4a^2-4a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2a\\4a\left(a-1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=2a\\\left[{}\begin{matrix}a=0\left(loại\right)\\a-1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Lời giải:
Theo bài ra thì tọa độ đỉnh của parabol là $(-2,19)$
Từ hàm $y=ax^2+bx+3=a(x+\frac{b}{2a})^2+3-\frac{b^2}{4a}$ ta có tọa độ đỉnh của parabol là:
$(\frac{-b}{2a}, 3-\frac{b^2}{4a})$
$\Rightarrow \frac{-b}{2a}=-2; 3-\frac{b^2}{4a}=19$
$\Rightarrow a=-4; b=-16$
+ Giao điểm của parabol với trục tung:
Tại x = 0 thì y = a.02 + b.0 + c = c.
Vậy giao điểm của parabol với trục tung là A(0 ; c).
+ Giao điểm của parabol với trục hoành :
Tại y = 0 thì ax2 + bx + c = 0 (*).
Để parabol cắt trục hoành tại hai điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt ⇔ Δ = b2 – 4ac > 0.
Khi Δ > 0 thì phương trình (*) có hai nghiệm là
Tọa độ hai giao điểm là
Parabol đi qua điểm M suy ra 6 = 25a – 5b + c (1)
Parabol cắt Oy tại điểm có tung độ bằng -2 nên -2 = a.0 + b.0 + c hay c = -2
Vậy 25a – 5b = 8
Chọn B.
a: THeo đề, ta có hệ:
\(\left\{{}\begin{matrix}\dfrac{4}{2a}=2\\a\cdot3^2-4\cdot3+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c-12+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\c=9\end{matrix}\right.\)
b: Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}-\dfrac{\left(-4\right)^2-4ac}{4a}=0\\a-4+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}16-4ac=0\\a+c=5\end{matrix}\right.\)
=>ac=4 và a+c=5
=>a=5-c và ac=4
ac=4
=>c(5-c)=4
=>5c-c^2-4=0
=>c=1 hoặc c=4
=>a=1 hoặc a=4
Vì (P) có trục đối xứng x = 1 => \(-\dfrac{b}{2a}=1\left(1\right)\)
Vì (P) đi qua A(2; 3) => với x = 2 thì y = 3 => 4a + 2b + c = 3 (2)
Vì (P0 cắt trục tung tại điểm có tung độ bằng 3 => Với x = 0 thì y = 3 => c = 3 (3)
Từ (1), (2), (3) ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\4a+2b+c=3\\c=3\end{matrix}\right.\) => ...
=> xem lại đề @@
thank tao thấy vô lý lên mới đi hỏi