Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)
=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\)
=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)
=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)
=> a = -2,4 ; b = -1,6 ; c = -0,9
b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)
=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)
=> \(\frac{a}{20}=\frac{b}{18}\)(1)
Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)
Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)
=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)
=> a = -40 ; b = - 36 ; z = -30
a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)
\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)
b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)
\(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)
Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16
\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)
\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)
=>[(a+d)+(b+c)].[(a+d)-(b+c)]=[(a-d)-(b-c)].[(a-d)+(b-c)]
=>(a+d)2 - (b+c)2 = (a-d)2 - (b-c)2 = 2ad - 2bc = - 2ad + 2bc => 4ad = 4bc => ad=bc (dpcm)
a) ta có: \(\frac{a}{4}=\frac{b}{5};\frac{b}{5}=\frac{c}{8}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{5}=\frac{c}{8}=\frac{5a}{20}=\frac{3b}{15}=\frac{3c}{24}\)
ADTCDTSBN
...
bn tự áp dụng rùi tìm a;b;c nha
b) ta có: \(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}=\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}\)
ADTCDTSBN
có: \(\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}=\frac{3a+9-5b+10+7c-7}{15-15+49}\)
\(=\frac{\left(3a-5b+7c\right)+\left(9+10-7\right)}{49}=\frac{86+12}{49}=\frac{98}{49}=2\)
=>...
c) ta cóL \(\frac{a}{7}=\frac{b}{6}\Rightarrow\frac{a}{35}=\frac{b}{30}\)
\(\frac{b}{5}=\frac{c}{8}\Rightarrow\frac{b}{30}=\frac{c}{48}\)
\(\Rightarrow\frac{a}{35}=\frac{b}{30}=\frac{c}{48}=\frac{2b}{60}\)
ADTCDTSBN
...
các bài còn lại bn dựa vào mak lm nha!
\(a:b:c=5:4:2\)và \(a^2-b^2+c^2=52\)
ta có \(a:b:c=5:4:2\Leftrightarrow\frac{a}{5}=\frac{b}{4}=\frac{c}{2}\Leftrightarrow\frac{a^2}{5^2}=\frac{b^2}{4^2}=\frac{c^2}{2^2}\Leftrightarrow\frac{a^2}{25}=\frac{b^2}{16}=\frac{c^2}{4}\)
theo tính chất dãy tỉ số bằng nhau
\(\frac{a^2}{25}=\frac{b^2}{16}=\frac{c^2}{4}=\frac{a^2-b^2+c^2}{25-16+4}=\frac{52}{13}=4\)
do đó
\(\frac{a^2}{25}=4\Leftrightarrow a^2=100\Leftrightarrow\hept{\begin{cases}a=10\\a=-10\end{cases}}\)
\(\frac{b^2}{16}=4\Leftrightarrow b^2=64\Leftrightarrow\hept{\begin{cases}b=8\\b=-8\end{cases}}\)
\(\frac{c^2}{4}=4\Leftrightarrow c^2=16\Leftrightarrow\hept{\begin{cases}c=4\\c=-4\end{cases}}\)
vậy các cặp a,b,c thỏa mãn là \(\left\{a=10;b=8;c=4\right\}\left\{a=-10;b=-8;c=-4\right\}\)
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
Ta có: a:b:c:d=2:3:4:5
=>\(=>\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=>\frac{3c}{6}=\frac{b}{3}=\frac{2c}{8}=\frac{4d}{20}=\frac{3a+b-2c+4d}{6+3-8+20}=\frac{105}{21}=5\)
=>a/2=5 =>a=5.2=10
=>b/3=5 =>b=5.3=15
=>c/4=5 =>c=5.4=20
d/5=5 =>d=5.5=25
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{3a}{6}=\frac{2c}{8}=\frac{4d}{20}=\frac{3a+b-2c+4d}{6+3-8+20}=\frac{105}{21}=5\Rightarrow a=10,b=15,c=20,d=25\)
3a/6=b/3=2c/8=3a-b+2c/6-3+8=22/11=2
a=4
b=6
c=8
caau còn lại tương tự chúc bn hok tôys